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We develop analytic methodologies for stability analyses (using

nonlinear and linear methodologies) of parallel dc-dc converters

(under unsaturated and saturated operating conditions) using

their switching model, discrete model (based on nonlinear map),

and averaged model. We describe the approach for investigating

the behavior of the stable and unstable equilibrium solutions

of a parallel dc-dc converter under parametric variations and

illustrate the methodology using a load-sharing dc-dc buck

converter. For unsaturated operating condition, using bifurcation

analysis and Floquet theory, we predict the stability boundary of

the nominal solution, determine its postinstability dynamics, and

investigate the dependence of the converter dynamics on its initial

conditions. Subsequently, we demonstrate the differences in the

predictions of the instabilities and instability boundaries using

(conventional) linearized averaged (small-signal) and discrete and

switching models.
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I. INTRODUCTION

Parallel dc-dc converters are widely used in
telecommunication power supplies [32]. They operate
under closed-loop feedback control to regulate
the output voltage and enable load sharing. These
closed-loop converters are inherently nonlinear
systems. The major sources of nonlinearities are the
switching nonlinearity and converter interaction. So
far, however, analyses in this area of power electronics
are based primarily on linearized (small-signal)
averaged models. When a nonlinear converter has
solutions other than the nominal one, small-signal
analyses cannot predict the basin of attraction of the
nominal solution and the dynamics of the system after
the nominal solution loses stability. The dependence
of the converter dynamics on the initial conditions
is also ignored in small-signal analyses. In addition,
averaged models cannot predict the dynamics of a
switching converter in a saturated region.
To analyze the stability of these switching systems,

one has to deal first with their discontinuity [24, 31].
The concept of stability of the equilibrium solutions
of a continuous, smooth system is well defined [1, 2].
However, for discontinuous systems, the definition of
solution is itself not straightforward [3—5]. To analyze
the stability of an n-dimensional discontinuous system
with m switching planes, one has to first define a
region of operation, which in general lies at the
intersection of these m hyperplanes. The global
stability of this region is defined as follows [4]. One
has to show first that all of the trajectories approach
this region (reaching condition) and that, once on
this hypersurface, they cannot leave it (existence
condition). If these two conditions are satisfied, then
the discontinuous system has a solution surface or
a sliding mode. The dynamics of the system on this
hypersurface is described by a set of equations, which
are smooth and continuous. Finally, one has to show
that all of the solutions on this surface tend to a single
equilibrium point as time t!1.
Analysis of a variable-structure system using an

averaged model assumes two things. First, a solution
surface exists. In other words, the reaching and
existence conditions are satisfied. Second, the control
has no delay or the switching frequency is infinite. In
reality, the switching frequency is finite and for many
converters global existence of a solution surface for
any controller is not possible.
If the frequency is finite, then we do not have a

solution surface but a boundary layer around it [5].
Thus stability in the sense of Filippov [4] can be
applied only if the width of the boundary layer is
zero. Under this condition, the dynamics of the system
on the solution surface are described accurately by
the averaged model. However, when the width of the
boundary layer is not zero, we convert the periodic
system to a map. Thus, within the boundary layer, we
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redefine the stability problem from one of analyzing
the stability of a periodic orbit to that of analyzing the
stability of a fixed point.
We use these basic concepts to investigate the local

and global stabilities of nonlinear, nonautonomous
parallel dc-dc converters in the unsaturated and
saturated regions.1 Unlike [32] and [33], the analyses
presented here are generalized and the concept
feasibility is illustrated for a simple two-converter
problem using commonly-used averaged-current
sharing control instead of master-slave control in [33].
The present paper also outlines stability approaches
using switching, discrete, and averaged model for
parallel dc-dc converters. Further, unlike [32] and
[33], the analyses have been presented here for
unsaturated as well saturated regions. Within the
unsaturated region, we develop techniques to predict
the fast-scale and slow-scale stability boundaries
and to determine the type of instability of the
nominal orbit. Using these ideas, instabilities of two
closed-loop buck converters operating in phase and
with interleaving are investigated, which is also a key
difference of the present work compared with [33].
For these two cases, we compare the results obtained
using a nonlinear map with those obtained using the
averaged model and demonstrate the shortcomings of
the latter. Unlike [33], we also demonstrate the impact
of parametric variations of the parallel converter on
its fast-scale and slow-scale instabilities. Finally,
we investigate the impact of a strong feedforward
disturbance on the stability of the two buck converters
when they have the same parameters and when they
have parametric variation. Using concepts developed
in this paper, we predict the dynamics of the converter
in the saturated and unsaturated regions under
steady-state and transient conditions. The presented
stability problem is a real phenomenon, which could
occur in any practical multi-module converter system
and the results presented can be used to predict and
prevent such a problem.

II. MODELING

A. Power Stage

We assume that the nonlinearities due to the
power devices and parasitics are negligible and that
the converter, operating in continuous conduction
mode (CCM),2 is clocked at a rate equal to the

1A comprehensive stability analysis using nonlinear map for a
single dc-dc converter (i.e., N = 1 in Section II) is provided in [9].
2If the parallel dc-dc operates in discontinuous conduction mode
(DCM), the map-based analysis approach described here remains
exactly the same; only the map and the auxiliary switching
conditions change. Likewise, the switching and the averaged models
of the parallel dc-dc converters will change, but the basic stability
analysis approach remains unchanged.

Fig. 1. Generic configuration of N parallel dc-dc converters
operating with single voltage source and load.

switching frequency. Moreover, the controller is
designed in such a way that, once a change of state
is latched, it can be reset only by the next clock.
This effectively eliminates the possibility of multiple
pulses within a switching cycle. In Fig. 1 we show a
schematic of a generic basic parallel dc-dc converter
with one switch per converter. The total number of
converters connected in parallel is N. Each individual
module within these multi-topological systems is
in the on-state when the switch is closed and in the
off-state when it is open. We represent these switching
functions by a switching vector S(t). We assume that
the phase shift between the carrier waveforms of two
successive converters is equal to ± = T=N, which is
constant (where T is the switching cycle time). We
note that, when ± = 0, the converters are switching
in phase. If we represent the states of the open-loop
converter (i.e., the inductor currents iLi (t) and the
capacitor voltages vCi (t) by the vector X

o(t), then the
equations governing a parallel-boost or a parallel-buck
converter can be expressed as

_Xo(t) = Fo1 (X
o(t),u(t),S(t))

vdc(t) = F
o
2 (X

o(t),u(t),S(t))
(1)

where u(t) is the forcing input. Equation (1) represents
a discontinuous and nonautonomous system. The
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discontinuity is due to the switching vector S(t). For
convenience, we drop the notation of time from now
on and rewrite (1) as

_Xo = Fo(Xo,u)+Go(Xo,u)S+Wo
1 (X

o,S)

vdc =H
o(Xo)+Wo

2 (X
o,S)

(2)

where Fo, Go, and Ho are continuous functions. For
some systems (e.g., the parallel-buck converter), Wo

1
and Wo

2 are continuous because terms containing the
equivalent series resistance (ESR) are not coupled
with the switching function. Hence, Wo

1 and W
o
2 can

be lumped with the other terms in (2). However, for
other systems like the parallel-boost converter, they
are discontinuous. If we neglect the ESR, then (2)
simplifies to the following form:

_Xo = Fo(Xo,u) +Go(Xo,u)S

vdc =H
o(Xo):

(3)

Equations (2) and (3) represent generic switching
models of parallel-buck and parallel-boost converters
when the effect of the ESR is incorporated and when
it is not.
An alternate way to model the variable-structure

system represented by (2) is to use a map [6—9].
Because there are N converters (as illustrated in Fig. 2
for N = 2), which are operating in parallel with a
phase shift of ±, there are N switchings that occur in
each switching cycle (of duration T) of the nominal
steady-state system. The state-space equations for the
ith subswitching cycle of duration ti are written as

_Xo = Aoi X
o +Boi u

vdc = C
o
i X

o
(4)

where
NX
i=1

ti = T (5)

and Aoi , B
o
i , and C

o
i are matrices that describe the

open-loop system in the time interval ti [9]. In
each switching subcycle, these matrices can be
obtained from (2) by substituting an appropriate
vector consisting of binary numbers for the switching
vector S.
Next, we derive an exact solution of the open-loop

system by stacking the consecutive solutions of (4)
over a switching period. The resulting discrete-time
equation can be written in state-space form as

Xok+1 = f
o
1 (X

o
k , t1, t2, : : : , t2N ,uk)

=©o(t1, t2, : : : , t2N)X
o
k +¡

o(t1, t2, : : : , t2N)uk

vdck+1 = f
o
2 (X

o
k , t1, t2, : : : , t2N ,uk) = C

o
2NX

o
k+1

(6)

Fig. 2. Two parallel buck converters operating with (averaged)
ACS control. If controllers for the two converters use only

inductor current and capacitor voltages for feedback, then they are
described as static-feedback controllers. If however, controllers use
additional states, then they are described as dynamic-feedback

controllers. We analyzed the stability and dynamics of the parallel
buck converter under unsaturated mode of operation using a
(conventionally used) dynamic feedback controller [9]. For

saturated mode of operation, we used a simple static-feedback
controller to illustrate the dynamics and instabilities in simple

terms.

where

©o(t1, t2, : : : , t2N)

=
2NY
i=1

©o2N¡i+1(ti) and ©o2N¡i+1(¿ ) = e
Ao2N¡i+1¿

(7a)

¡ o(t1, t2, : : : , t2N)

=

0@ 2NY
i 6=1
©o2N¡i+1

1AZ t1

0
©o1(¿)B

o
1d¿

+

0@ 2NY
i 6=1,2

©o2N¡i+1

1AZ t2

0
©o2(¿)B

o
2d¿ + ¢ ¢ ¢

+
Z t2N

0
©o2N(¿)B

o
2Nd¿ (7b)

tj = ±¡ tj¡1 8 j = 2,4, : : : ,2N and
NX
i=1

ti = T:

(7c)Using Z t

0
eA

o
i
¿Boi d¿ = (e

Ao
i
t¡ I)(Aoi )¡1Boi (8)
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and (7), we simplify the expression for Xok+1 in
(6) to

Xok+1 = f
o
1 (X

o
k , t1, t2, : : : , t2N ,uk)

=
2NY
i=1

eA
o
i
t2N¡i+1Xok

+

0BBBBBBB@

Ã
2NY
i 6=1
eA

o
2N¡i+1 ti

!
(eA

o
1
t1 ¡ I)(Ao1)¡1Bo1

+

Ã
2NY
i 6=1,2

eA
o
2N¡i+1 ti

!
(eA

o
2
t2 ¡ I)(Ao2)¡1Bo2

+ ¢ ¢ ¢+(eAo2N t2N ¡ I)(Ao2N)¡1Bo2N

1CCCCCCCA
uk:

(9)

Equations (6) and (9) describing vdck+1 and
Xok+1 represent a map for dc-dc parallel-buck and
parallel-boost converter. If we compare the map
with the switching model described in (2), we see
that the map does not have the discontinuities due
to the switching vector S. This helps in studying the
dynamics because the concept of solution for smooth
systems is well defined. Besides, simulations based
on this map are much faster since they correlate the
states in one switching cycle (of duration T) with
those in the next switching cycle. Because the map
is not dependent on time any more, it describes a
reduced-order system. Hence, it cannot predict the
dynamics of a parallel converter beyond half the
switching frequency. However, it can predict the
subharmonics accurately.
Another approach to modeling parallel converters

is based on state-space averaging [10, 11]. In this
case, we convert the discontinuous-differential system
of equations described by (2) to a continuous system
by replacing the vector representing the switching
functions with a smooth and continuous duty-ratio
vector. In Appendix A, we illustrate the derivation
of an averaged model with two examples based on a
parallel-buck converter operating with two different
switching schemes. The general expression for the
averaged model is

_̄
X
o

= Fo(X̄o, ū) +Go(X̄o, ū)+Wo
1av (X̄

o,D)

v̄dc =H
o(X̄o)+Wo

2av (X̄
o,D)

(10)

where Wo
1av
and Wo

2av
are continuous functions and X̄o

represents the averaged value of the open-loop states.
The symbol D is a vector, which denotes the duty
ratios of a parallel converter. For some converters
(e.g., parallel buck), Wo

1av and W
o
2av are independent

of D. Hence, they can be lumped with Fo and Ho.
However, for others, like parallel boost converters,
they depend on D. Equation (10), describes a system
of ordinary differential equations, which can be used
for investigating only slow-scale dynamics.

B. Controller

There are more than one scheme for paralleling
dc-dc converters [27—30], including the master-slave
method [12] and the active-current sharing method
[13, 14]. The objectives of all of these schemes, in
general, are to regulate the output voltage and share
the load power equally among the converters. The
stability techniques we develop here are generic.
However, due to lack of space, we present simulation
results for the performance of parallel converters
operating with an active-current sharing (ACS)
scheme.
In Fig. 2, we show a schematic for an ACS

control. The symbol iav represents the average of
all load currents. To share the load equally among
the converters, the error between iav and the load
current supplied by each converter is added to the
reference voltage vr. The updated voltage reference
is then compared with the output voltage for each
converter. The output of the voltage loop is compared
with the inductor current, which is the controller
error signal. The controller can be simplified on the
need and application. If we consider a static-feedback
controller, then the expression of the error signal for
each converter can be expressed as

vei = P
s
i X

o + vr (11)

where Psi is a matrix corresponding to the
static-feedback controller. If, however, we consider
a dynamic-feedback controller, then we obtain

vei = P
d
i X

c: (12)

In (12), Xc represents the additional states of the
dynamics-feedback controller and is given by

_Xc = A
cXaug +Bcu+Brcvr (13)

where Xaug = (Xo Xc)T, Ac is a matrix, and Bc and
Brc are column vectors. Equations (11)—(13) give the
expressions for a multiloop static/dynamic feedback
controller. If the multiloop system does not use an
inner inductor-current loop then the matrices in
(11)—(13) have to be modified.

III. CLOSED-LOOP PARALLEL DC-DC CONVERTER

For a static-feedback controller, the order of the
closed-loop and open-loop systems remains the same.
The closed-loop switching model for the parallel
converter is given by

_X = F(X,u,vr)+G(X,u)S+W1(X,S)

vdc =H(X)+W2(X,S)
(14)

where F, G, and H are continuous functions.
The functions W1 and W2 are continuous for the
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parallel-buck converter and discontinuous for the
parallel-boost converter. For a static-feedback
controller, X = Xo. But for a dynamic-feedback
controller X = Xaug. The individual components of
the switching vector S are given by

si =−i(vei ¡ vrampi(t,±)) (15)

where individual ramp signals are described as
follows:

vrampi (t,±) = vmi ¤mod(t+(i¡ 1)±,T)¤f

8 i= 1, : : : ,N and f = 1=T:
(16)

Equation (16) describes the equations for carrier
waveforms with amplitudes vmi . Each of these ramp
waveforms has a period of T. Between the two
carrier waveforms, there is a phase shift ±. It follows
from (15) that the si are functions of the states of
the closed-loop converter. Hence, the closed-loop
switching model in (14) represents a nonlinear
nonautonomous discontinuous system.
Next, we derive a nonlinear map based on (14).

The state-space equation for the ith subswitching cycle
(of duration ti) is written as

_X = AiX +Biu+B
r
i vr

vdc = CiX
(17)

where
NX
i=1

ti = T (18)

and Ai, Bi, B
r
i , and Ci and are matrices that describe

the closed-loop system in each subcycle. In each
switching subcycle, these matrices can be obtained
from (14) by substituting an appropriate vector
consisting of binary numbers for the switching vector
S. Next, we derive an exact solution of the closed-loop
system by stacking the consecutive solutions of (17)
over a switching period. The resulting discrete-time
difference equation can be written in state-space form
as

Xk+1 = f1(Xk, t1, t2, : : : , t2N ,uk)

=
2NY
i=1

eA2N¡i+1 tiXk

+

0BBBBBBBB@

Ã
2NY
i 6=1
eA2N¡i+1 ti

!
(eA1 t1 ¡ I)(A1)¡1B1

+

Ã
2NY
i 6=1,2

eA2N¡i+1 ti

!
(eA2 t2 ¡ I)(A2)¡1B2

+ ¢ ¢ ¢+(eA2N t2N ¡ I)(A2N)¡1B2N

1CCCCCCCCA
uk

+

0BBBBBBB@

Ã
2NY
i 6=1
eA2N¡i+1 ti

!
(eA1t1 ¡ I)(A1)¡1Br1

+

Ã
2NY
i 6=1,2

eA2N¡i+1 ti

!
(eA2t2 ¡ I)(A2)¡1Br2

+ ¢ ¢ ¢+(eA2N t2N ¡ I)(A2N)¡1Br2N

1CCCCCCCA
vr

(19a)

vdck+1 = f2(Xk, t1, t2, : : : , t2N ,uk,vr) = C2NXk+1 (19b)

¾(Xk, t1, t2, : : : , t2N ,uk,vr) = 0 (19c)

and

tj = ±¡ tj¡1 8 j = 2,4, : : : ,2N: (19d)

In (19c), ¾ is a vector of dimension N £ 1 and
represents the auxiliary switching conditions for all of
the converters. For instance, the switching condition
for the converter that switches first is given by

¾(Xk, t1,uk,vr)

= '¡ (eA1 t1ªk +(eA1t1 ¡ I)A¡11 (B1uk +Br1vr))¡ vramp1 t1 = 0
(20)

where the vector ' represents the controller. Using
(19d), we reduce the dimension of ¾ to N.
Finally, we obtain an averaged model for the

closed-loop system. Using the same methodology,
which was used to develop the averaged model for
the open-loop converter, we show that the closed-loop
averaged model for the parallel converter is given by
the following expressions:

_̄
X = F(X̄, ū,vr) +G(X̄, ū)D+W1av (X̄,D)

v̄dc =H(X̄) +W2av (X̄,D)

di =
1

vrampi
v̄ei = PiX̄

(21)

where W1av and W2av are continuous functions, Pi
represents a matrix, and D is a vector representing the
duty ratios of the converters operating in parallel. The
individual components of this vector D are given by di
in (21). Equation (21) represents a nonlinear averaged
model. It can be used for studying the slow-scale
instability. If the ESRs of the output capacitors are
neglected, the averaged model cannot distinguish
between the dynamics of interleaved and synchronized
converters. Moreover, the averaged model cannot be
used to study the impact of saturation.

IV. ANALYSIS

In this section, we show how to analyze the local
and global stability of the dynamics of a parallel
dc-dc converter operating in the unsaturated and
saturated regions. The parallel converters, shown
in Fig. 1, operate with a finite switching frequency.
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The dynamics of these discontinuous nonlinear
nonautonomous systems evolve on fast and slow
scales. The stability analysis of these discontinuous
systems is difficult because the definition of a solution
is not clearly defined.
Filippov [4] and Aubin and Cellina [3] proposed

differential inclusion to find solutions of such
discontinuous systems with a multivalued right-hand
side. The resulting solution of this set-valued map
describes a solution of the slow dynamics [3] The
averaged model in (21) approximately describes the
slow dynamics for two reasons. First, the switching
frequencies of the systems are finite. Hence, they do
not have a discontinuous surface but a boundary layer
around the discontinuity. The averaged model in (21)
is based on the assumption of an infinite frequency
and hence the width of the boundary layer is zero.
Second, because switching of the converters in Figs. 1
and 2 is based on a comparison of an error signal
with a ramp rather than a hysteresis, the equivalent
control approach proposed by Filippov (which forms
the basis for (21)) is not always directly applicable
[5]. However, an analysis using an averaged model is
straightforward because it is continuous and smooth.
We deal with the stability based on an averaged model
later in this section.
An alternate way to analyze the stability of these

variable-structure systems is to use the nonlinear
map in (19). We describe the evolution of the
discontinuous system as a sequence. Besides, we
eliminate the discontinuity due to switching by
predicting the states at the beginning of the next
switching cycle based on the information available
at the end of the current switching cycle. Using these
maps, we convert the problem of finding the stability
of a nominal orbit (period-one orbit) to that of finding
the stability of a fixed point.
Another way to investigate the stability of the

nominal solution of (14) is numerical computation.
We transform (14) to the following form:

Xk+1 =M1(Xk, t
0
k, t
0
k+1,uk,vr): (22)

By choosing a relatively small time step t0k+1¡ t0k,
one can obtain a fairly accurate solution. In (22),
the scalar t0 represents the actual time and not the
instant of switching. How small the time step has to
be depends on how fast the open-loop and closed-loop
states evolve. The degree of accuracy depends
not only on the time step but also on the type of
numerical algorithm [15]. It was found that the use
of a combination of implicit and explicit numerical
techniques gives the best results. The rationale behind
obtaining the solution of a discontinuous system using
numerical integration is provided by the Lebesgue
measure theory [16]. There are two primary reasons
why it is applicable here. First, the total number of
switchings in one switching cycle is finite because
multiple pulsing cannot occur. Second, at each of

these switching instants, the right- and left-hand
limits of each of the states of the converters are equal.
This is because we are considering hard-switched
converters. Thus, at the points of discontinuity, we do
not have any jump in the states. Based on these two
pieces of information and on whether the sampling
time for numerical integration is much smaller than
the dynamics of the system, the Lebesgue theory tells
us that we can consider the points of discontinuities
(due to switchings) to have zero measure [4, 16]. In
other words, though the system is undefined at the
points of switching, we can carry out the integration
and the resulting solution is valid almost everywhere.

A. Stability Analysis using the Switching Model

We use a combination of a shooting technique and
Newton-Raphson procedure to calculate the periodic
orbits and determine their stability. To accomplish
this, we convert the initial-value problem in (14) to a
two-point boundary-value problem. Let the dimension
of X be n£ 1. We seek an initial condition ° = X(0)
such that the minimal solution X(t,°) of (14) satisfies
the condition

X(T,°) = ° = X(0): (23)

In other words, the trajectory that runs from ° =
X(0) to the same location over a time period of T
represents the desired periodic solution.
We start with a guess °0 and seek a ±° such that

X(T,°0 + ±°)¡ (°0 + ±°)¼ 0: (24)

Expanding (24) in a Taylor series and keeping only
the linear terms in ±°, we obtain

(@X°(T,°0)¡ I)±° = °0¡X(T,°0): (25)

In (25), @X°(T,°0) represents the derivatives of X with
respect to ° evaluated at (T,°0). The dimension of the
matrix @X°(T,°0) is n£ n. The individual components
of this matrix are given by

@X°i (T,°0) = limh!0
Xi(T,°0 + h°0i )¡X(T,°0)

h
:

(26)

Once @X°(T,°0) is known, we solve the system of
n linear algebraic (25) for ±°. Then, we use ±° to
update the initial guess °0 and repeat the process until
±° is within a tolerance level. Finally, the stability
of the calculated periodic solution is ascertained
from the eigenvalues of the monodromy matrix @X°
evaluated at (T,°0). For the periodic solution to be
asymptotically stable, every eigenvalue but one must
be inside the unit circle in the complex plane.

B. Stability Analysis using the Discrete Model

Let us assume that the closed-loop system
described by (19) is operating in steady state. The
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fixed points of Xk in (19a) correspond to period-one
orbits of the closed-loop converter. They are obtained
using the constraint Xk+1 = Xk = Xs. Letting us = uk,
t1 = t1s , t2 = t2s , : : : , t2N = t2Ns we find that the fixed
points of (19a) are given by

Xs =

Ã
I¡

2NY
i=1

eA2N¡i+1 tis

!¡1

£

0BBBBBBBBBB@

0@ 2NY
i 6=1
eA2N¡i+1 tis

1A(eA1t1s ¡ I)(A1)¡1B1
+

0@ 2NY
i 6=1,2

eA2N¡i+1 tis

1A (eA2t2s ¡ I)(A2)¡1B2
+ ¢ ¢ ¢+(eA2N t2Ns ¡ I)(A2N)¡1B2N

1CCCCCCCCCCA
us

+

Ã
I¡

2NY
i=1

eA2N¡i+1 tis

!¡1

£

0BBBBBBBBBB@

0@ 2NY
i 6=1
eA2N¡i+1 tis

1A(eA1t1s ¡ I)(A1)¡1Br1
+

0@ 2NY
i 6=1,2

eA2N¡i+1 tis

1A (eA2t2s ¡ I)(A2)¡1Br2
+ ¢ ¢ ¢+(eA2N t2Ns ¡ I)(A2N)¡1Br2N

1CCCCCCCCCCA
vr:

(27)

Substituting (27) into (19c), we obtain

¾(Xs, t1s, t2s, : : : , t2Ns,us,vr) = 0: (28)

We solve (27) and (28) for the N unknowns X and
the tis . One way to solve for the unknowns is to
substitute for Xs from (27) into (28) and solve for
the tis . Once the tis are calculated, we solve for Xs.
This is difficult for higher order systems because
most of the mathematical packages, like Matlab or
Mathematica, cannot symbolically compute exponents
of very large matrices. Besides, the computation of
(I¡Q2N

i=1 e
A2N¡i+1 tis) in (27) using these packages is

inaccurate. Alternately, we use a Newton-Raphson
method. We start with an initial guess Xg and tig for
the steady-state values of Xs and tis . This guess is
obtained using either simulation or the method of
steepest decent [17]. Keeping the uk constant, we
rewrite (19a) and (19c) as

Xg + ±Xg = f1(Xg + ±Xg , t1g + ±t1g , t2g + ±t2g , : : : , t2Ng + ±t2Ng )

(29)

¾(Xg + ±Xg, t1g + ±t1g , t2g + ±t2g , : : : , t2Ng + ±t2Ng ) = 0:

(30)

Expanding (29) and (30) in Taylor series, we obtain

Xg + ±Xg = f1(Xg + ±Xg) +
@f1
@Xg

±Xg +
@f1
@tg
±tg (31)

¾(Xg + ±Xg) +
@¾

@Xg
±Xg +

@¾

@tg
±tg = 0 (32)

where tg is a vector representing t1g , t2g , : : : , t2Ng . We
rewrite (31) and (32) as0BB@

@f1
@Xg

@f1
@Xg

@f1
@Xg

@f1
@Xg

1CCAµ±Xg±tg
¶
= J

µ
±Xg

±tg

¶
=
µ
Xg ¡f1
¡¾

¶
:

(33)

Equation (33) represents a set of linear algebraic
equations, which are solved for ±Xg and ±tg by using
the LU decomposition method [18]. To this end,
we express J as LU, where the matrices L and U
represent the lower and upper triangular matrices of
J . Then, we rewrite (33) as

J

µ
±Xg

±tg

¶
= LU

µ
±Xg

±tg

¶
=
µ
Xg ¡f1
¡¾

¶
: (34)

Multiplying (34) from the left with L¡1, we have

U

µ
±Xg

±tg

¶
= Z = L¡1

µ
Xg ¡f1
¡¾

¶
(35)

which can be solved for the new set of variables Z.
Then the (±Xg ±tg) are calculated without inverting the
matrix U.
We found that, unlike the matrix J¡1, the

matrix L¡1 can always be computed correctly by
either Matlab or Mathematica. If, however, this
is not the case, then one can use more advanced
algorithms, such as the conjugate gradient method
[18] and globally convergent homotopy algorithms
[19]. However, homotopy algorithms have the
disadvantage of giving both the real-valued as well
as the complex-valued solutions.
To ascertain the stability of a given fixed point, we

perturb the nominal values as

X = Xs+ ±X, t= ts+ ±t

u= us+ ±u, vdc = vdcs+±vdc :
(36)

Substituting (36) into (19a) and (19c), expanding the
results in Taylor series, and keeping first-order terms,
we obtain

±Xk+1 =
@f1
@X

±X +
@f1
@u
±u

@¾

@X
±X +

@¾

@t
±t+

@¾

@u
±u= 0:

(37)
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It follows from the second equation of (37) that

±t=¡
µ
@¾

@t

¶¡1µ @¾
@X
±X +

@¾

@u
±u

¶
: (38)

Substituting (38) into the first equation of (37), yields

±Xk+1 =H1±X +H2±u (39)

where

H1 =
@f1
@X

¡
µ
@¾

@t

¶¡1
@¾

@X

H2 =
@f1
@u

¡
µ
@¾

@t

¶¡1
@¾

@u
:

(40)

The stability of a given fixed point can be ascertained
by the eigenvalues (Floquet multipliers) of H1 [1]. For
asymptotic stability, all of the Floquet multipliers must
be within the unit circle.
To determine the region of attraction of the

nominal solution, we need to select a Lyapunov
function V(:) for the nonlinear system in (19a) and a
class K function ®. If there is a ball B(X̃¤) with radius
r centered at X̃¤ such that for all X̃k 2 B(X̃¤), then the
stability of the nominal solution of (19a) is guaranteed
if [20]

V(X̃k)¸ ®(kX̃k ¡ X̃¤k)

V(X̃k+1)¡V(X̃k)< 0

V(X̃¤) = 0

(41)

where X̃k = Xk ¡Xs.
If one of the Floquet multipliers exits the unit

circle through +1, then either a cyclic-fold, or a
symmetry-breaking, or a transcritical bifurcation
occurs. If a Floquet multiplier exits the unit circle
through ¡1, a period-doubling or flip bifurcation
occurs. If, however, two of the Floquet multipliers
exit the unit circle as complex conjugates, a secondary
Hopf bifurcation occurs. To find out whether the
bifurcation is subcritical or supercritical in nature, we
calculate the normal form of the nonlinear system in
the neighborhood of the bifurcation. Alternately, we
can use numerical simulation.
Next, we describe briefly the procedure to

determine the normal form of the map near the
bifurcation. For a given bifurcation parameter (e.g.,
input voltage), let the nonlinear map describing the
dynamics of the closed-loop converter be

Xk+1 = f1(Xk, tk) = f1(Xk,©(Xk)) (42)

¾(Xk, tk) = ¾(Xk,©(Xk)) = 0 (43)

where tk is a vector representing t1k , t2k , : : : , t2Nk .
Expanding (42) about its nominal point using Taylor
series and keeping terms up to third-order term, we

obtain

X̂k+1 =
µ
@f1
@X

+
@f1
@©

@©

@X

¶
X̂k

+
1
2

µ
@2f1
@X2

+
@2f1
@©@X

d©

dX
+
@2f1
@X@©

d©

dX

+
@2f1
@©2

µ
d©

dX

¶2
+
@f1
@©

d2©

dX2

!
X̂2k

+
1
6

µ
@3f1
@X3

+
@3f1
@©@X2

d©

dX

¶
X̂3k

+
1
6

µ
@2f1
@©@X

+
@2f1
@X@©

¶µ
d2©

dX2

¶
X̂3k

+
1
6

µ
@3f1

@X@©@X
+

@3f1
@©2@X

d©

dX
+

@3f1
@X2@©

+
@3f1

@©@X@©

¶µ
d©

dX

¶
X̂3k

+
1
6

Ã
@3f1
@X@©2

µ
d©

dX

¶2
+
@3f1
@©3

µ
d©

dX

¶3

+2
@2f1
@©2

µ
d©

dX

¶µ
d2©

dX2

¶¶
X̂3k

+
1
6

µ
@2f1
@X@©

d2©

dX2
+
@2f1
@X2

d©

dX

d2©

dX2
+
@f1
@©

d3©

dX3

¶
X̂3k

(44)

where © and its derivatives are calculated from (43).
Next, we let X =W» (where W is a matrix whose
column vectors are the eigenvectors of the linear term
on the right-hand side of (44)) in (44) and obtain

»k+1 = J»k +F2(»k) +F3(»k) +O(j»kj4) (45)

where F2 and F3 represent the second-order and
third-order nonlinear terms in ».
To determine the normal form of the map near

a bifurcation resulting from a Floquet multiplier
existing the unit circle either through +1 or ¡1, we
arrange the eigenvectors in W so that the eigenvector
corresponding to this multiplier is the first. Hence,
(45) can be rewritten as

»1k+1 = ®»
1
k +F

1
2 (»k)+F

1
3 (»k) (46)

»̂k+1 = ®»̂k + F̂2(»k)+ F̂3(»k) (47)

where ®=§1 and the vectors with the caret exclude
the first elements. To calculate the center manifold, we
let »̂ = h(»1), where h is a quadratic function vector of
»1k in (47) and obtain

h(»1k+1) = Ĵh(»
1
k ) + F̂2(»

1
k ,h(»

1
k )) + F̂3(»

1
k ,h(»

1
k )):

(48)
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Substituting (46) into (48) yields the functional

h(®»1k ) = Ĵh(»
1
k ) + F̂2(»

2
k ) + ¢ ¢ ¢ (49)

which can be solved for h(»1). Substituting for h(»1)
in (46) yields the normal form

»̂1k+1 = ®»̂
1
k + F̂

1
2 (»k) + F̂

1
3 (»k): (50)

A similar procedure can be used to calculate
the normal form in case two complex conjugate
multipliers exist the unit circle.

C. Stability Analysis using the Averaged Model

The averaged model represents a continuous
differential system, which is derived under the
assumption of an infinite switching frequency.
The closed-loop parallel converter described in the
(21) may have more than one equilibrium solution.
Therefore, in step one of our analysis, we determine
the equilibrium solutions of equation of _X in (21) by
setting _X = 0. The result is

_̄
X = F(X̄, ū,vr) +G(X̄, ū)D+W1av (X̄,D) = 0: (51)

Substituting for the individual elements of
D, i.e., di, from (21) into (51) yields a nonlinear
system of algebraic equations for the X̄. If there
is only one equilibrium solution, which equals
the nominal solution of the converter, then, based
on the averaged model, we have a globally stable
solution (in the unsaturated region). If there are
more than one equilibrium solutions, then we need
to determine the stability of the nominal solution.
This is achieved by first linearizing the nonlinear
system in the neighborhood of an equilibrium solution
and then computing the eigenvalues of the Jacobian
matrix. For stability, none of the eigenvalues of
the Jacobian matrix should have a positive real
part.
It follows from (11)—(13) that, if the feedback

controller is static, the dimension of the closed-loop
system, described by (21), is the same as the
open-loop system, which is given by (10). However,
in the case of a dynamic-feedback controller, the
dimension of equation could be much higher than that
of (10). In this case, we can compute the equilibrium
solutions in an easier way. For instance, let us assume
that we have a multiloop feedback system with
an outer load-current loop and an inner-voltage
loop. Depending on the type of converter and the
performance requirements, we can also choose
an inner inductor-current loop, which receives its
reference from the voltage loop. Let the vectors X̄CI ,
X̄Cv , and X̄Ci represent the states corresponding to
the load-current loop, the inner-voltage loop, and the
inner inductor-current loop, respectively. Rewriting

(13), we obtain0BB@
_
XCI

_
XCv

_
XCi

1CCA=
0B@AIP AII 0 0

AvP AvI Avv 0

AiP AiI Aiv Aii

1CA
0BBB@
Xo

XCI

XCv

XCi

1CCCA

+

0B@B
I

Bv

Bi

1CA ū+
0B@B

rI

Brv

Bri

1CAvr: (52)

Setting the right-hand side of (52) equal to zero and
solving the resulting equations, we obtain

_
XCi = −(Xo): (53)

Using (53), we rewrite the last equation of (21) as

dj =
1

vrampj
Hc
j X

Ci =−0(Xo) or D = ¡ (Xo):

(54)

Substituting (54) into the first equation of (10) and
setting Xo = 0, we obtain

F(Xo, ū)+G(Xo, ū)¡ (Xo)+Wo
1av (X

o,¡ (Xo)) = 0:

(55)

Unlike (51), (55) depends only on Xo and hence is
relatively easier to solve for the equilibrium solutions.
Having obtained Xo, we determine the equilibrium
values of XCI , XCv , and XCi using (53), thereby
obtaining the equilibrium solutions of X̄ (= X̄s) for
a given u (= us). Next we rewrite the last equation of
(21) as

D = P(X̄) (56)

and rewrite the first equation of (21) as

_̄
X = F(X̄, ū,vr) +G(X̄, ū)P(X̄)+W1av (X̄,P(X̄)) = 0:

(57)

The stability of a given equilibrium solution X̄
is ascertained by the eigenvalues of the Jacobian
matrix of the right-hand side of (57) evaluated at
X̄s. To determine the postbifurcation scenario, we
compute the normal form of (57) in the vicinity of
the bifurcation point [21].

D. Analysis under Saturated Conditions

The unsaturated region for N parallel converters,
operating with a finite but large frequency, is a
boundary layer around the intersection of all of
the N discontinuous hypersurfaces. The stability
analysis (using bifurcation analyses and Lyapunov’s
method) performed so far assumes that the parallel
converter is operating in this region. When one or
more converters stop modulating for one or more
switching cycles, then we have a saturated system.
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If all of the converters are not modulating, the
system is fully saturated; otherwise, the system
is partially saturated. In a parallel converter with
N switches, there are 2N ways by which a full
saturation can occur. For the same system, there
are

PN¡1
i=1 (N!=(N ¡ 1)!(i)!) possibilities for partial

saturation. Under full saturation, these piecewise-linear
systems behave as autonomous systems because they
are not switching. However, under partial saturation,
the parallel converter still behaves as a nonlinear
nonautonomous system because there is at least
one converter, which is operating in the unsaturated
region.
To analyze the stability of a saturated system,

we need to address two issues. First, when a parallel
converter, which is operating in the unsaturated
region, saturates, does the solution remain inside the
boundary layer or leave? Second, if the solution leaves
the boundary layer, does the trajectory return back to
it? The first issue deals with the question of existence;
that is, under what conditions do all the solution
trajectories point toward the boundary layer. If all the
solution trajectories point toward the boundary layer
for all values of the closed-loop states, then we have
global existence of the boundary layer. The second
issue, which deals with the reaching condition for the
solution trajectories, becomes important in the absence
of global existence of the boundary layer.
We deal with the issue of existence using

Lyapunov’s direct II method. The stability analysis
using a positive definite smooth Lyapunov function
V for a nonsmooth system with a discontinuous
surface demands that the following three conditions
are satisfied [22, 23]:

1) in the saturated/continuity region _V(¢)< 0;
2) as the solution approaches the discontinuity

surface _V(¢)! 0;
3) on the discontinuity surface _V(¢) = 0.

If these three conditions are satisfied, then the solution
exists on the surfaces of discontinuity. The converters
that we deal with have finite but large frequencies and
hence have boundary layers around the discontinuity
surfaces. If the width of the boundary layer is zero
(when the switching frequency is infinite), the above
conditions apply directly. These conditions do not,
however, carry over to a finite-frequency converter,
and at best give an upper estimate of stability. The
reason is that, within the boundary layer, the nominal
solution for the parallel converter is a periodic
trajectory and not an equilibrium point, for which
Lyapunov’s method does not apply. For the stability
analysis in this region, one needs to reduce the order
of the system and then use Lyapunov’s method or
bifurcation analyses. We have shown this in the
preceding sections.
Outside the boundary layer, however, the

converters are not switching. Hence, the conditions

TABLE I
Nominal Parameters for the Two Buck Converter Modules

Parameters Nominal Value

L1 = L2 50 ¹H
rL1
= rL2 21 m−

C1 = C2 4400 ¹F
rL1
= rL2 50 m−

vr1
= vr2 2.0 V

fi1
= fi2 1.0

fv1
= fv2 0.4

T = 1=switching frequency 10 ¹sec (= 1=100 kHz)
vramp1

= vramp2 3.0 V

u 20 V—50 V

for _V(¢)< 0 for a converter operating with no
boundary layer are directly applicable to a
finite-frequency, fully saturated converter, as long as
the solutions are in the saturated region. For partial
saturation, at least one of the converters is switching.
To determine the stability of the quasi-solution
surface, we resort to the discretized version of the
three (Lyapunov-based) above conditions [20].
However, to accomplish this, we need to modify the
nonlinear map for the unsaturated region.
To determine the reaching conditions for those

trajectories that leave the boundary layer (if global
existence cannot be established), we find the
equilibrium solutions for the saturated converter.
Using the first equation of (17), we show that the
dynamics of a fully saturated system are given by

Xk+1 = e
A1sat t1sat + (eA1sat t1sat ¡ I)A¡11satB1satuk
+(eA1sat t1sat ¡ I)A¡11satBr1satvr: (58)

The equilibrium solutions of (58) are determined
using the constraint Xk+1 = Xk = Xsat. The result is

Xsat = (e
A1sat t1sat ¡ I)¡1((eA1sat t1sat ¡ I)A¡11satB1satuk

+(eA1sat t1sat ¡ I)A¡11satBr1satvr): (59)

If an equilibrium solution is virtual, then the error
trajectories will be inside the boundary layer
eventually. If it is real, then it will influence the
unsaturated solution. For partially saturated systems,
we can, similarly, determine the equilibrium solutions
for the discretized system.

V. RESULTS

In the previous sections, we developed the
methodologies and criteria for the stability analysis
of parallel dc-dc pulsewidth modulated (PWM)
converters (see Table I for parameter details) using
different models. We applied these criteria to analyze
the stability of two parallel buck converters (shown
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Fig. 3. Eigenvalues of averaged model for parallel converter
indicate a stable system.

in Fig. 2) operating with ACS control. The states
of the plant are iL1 , iL2 , vC1 , and vC2 . There are
additional states corresponding to the load-current and
voltage-loop controllers. Each of these converters has
a multiloop control with an outer load-sharing current
loop and an inner voltage loop. The objective of the
closed-loop system is to share the load power equally
and regulate the output voltage. It is worth noting that
we can apply any other parallel-control scheme like
the master-slave control, as well.

A. Unsaturated Control

We choose the control structure based on [14]. The
compensators for the outer-loop current controllers
have the form

!Ik
s

0BB@
s

!Izk
+1

s

!Ipk
+1

1CCA
(nominal values: !I1 = !I2 = 4 ¤104, !Iz1 = !Iz2 =
2 ¤ 103, and !Ip1 = !Ip2 = 1 ¤ 104), whereas the
compensator structure for the inner-loop current
controller has the form

!ik
s

0BB@
s

!izk1
+1

s

!ipk1
+ 1

1CCA
0BB@

s

!izk2
+1

s

!ipk2
+ 1

1CCA
(nominal values: !i1 = !i2 = 1 ¤106, !iz11 = !iz21 =
1 ¤ 104, !iz12 = !iz22 = 5 ¤ 104, !ip11 = !ip21 = 4 ¤ 105,
and !ip12 = !ip22 = 5 ¤105). In Fig. 3, we plot the
eigenvalues of the linearized averaged model as the
input voltage is varied from 25 to 50 V. Since none of
the eigenvalues in Fig. 3 has a positive real part, we
conclude that the nominal solution is locally stable for
the input voltage range.
Next, we analyze the stability of the same system

using a nonlinear map. We consider two cases: one for

Fig. 4. Onset of instability in interleaved parallel buck
converters. Two Floquet multipliers of period-one orbit exit unit

circle away from real axis, indicating Hopf bifurcation.
(a) With ESR. (b) Without ESR.

which the effect of the ESR of the output capacitors
is considered and the other for which it is not. In
Figs. 4(a) (ESR 6= 0) and 4(b) (ESR = 0), we show
the Floquet multipliers of the linearized map for
these two cases. For both cases, we see that, as the
bifurcation parameter (input voltage) is increased,
two complex conjugate Floquet multipliers exit the
unit circle away from the real axis, indicating a
Hopf bifurcation. This slow-scale instability is not
observed in Fig. 3. To find out the type of bifurcation,
we compute the normal form of the nonlinear map
in the neighborhood of the bifurcation point. The
normal form indicates a subcritical Hopf bifurcation.
Using a second-order Poincare map we show that
the postbifurcation response is quasiperiodic. This is
evident in Fig. 5.
Fig. 6 shows the impact of variations in the output

capacitance on the instability mechanism of the
interleaved parallel-buck converters. Starting with
the nominal values for C1 and C2, we reduce their
magnitudes by a factor of two for each successive set
of data, keeping all of the other parameters constant.
For each set of capacitor values, we investigate the
stability of the system for an input voltage varying
from 25 to 50 V. For values of the output capacitance
close to the nominal value, a subcritical Hopf
bifurcation occurs as the input voltage is increased.
As the value of the output capacitor is reduced,
no local instability occurs for the input-voltage
variation. However, as the output capacitance is
reduced even further, the parallel converter loses
stability as the input voltage is increased. We found
that the instability occurs due to a supercritical
Hopf bifurcation and not due to a subcritical Hopf
bifurcation.
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Fig. 5. Post-Hopf bifurcation scenario of interleaved parallel buck converters. Second-order Poincare map clearly shows quasiperiodic
response. It shows that even after the onset of instability, voltage ripple magnitude is not drastically large; as such, converter can be

operated close to the boundary, thereby increasing its dynamic response and bandwidth.

Fig. 6. Impact of variations in output capacitance on mechanism of instability of interleaved parallel converters. As capacitance is
decreased, mechanism for instability of parallel converter changes from supercritical to subcritical Hopf bifurcation (ascertained using

the normal in (43)). Subcritical Hopf bifurcation leads to slow-scale instability.

Next, we consider the impact of variations in the
input voltage on the operation of two parallel-buck
converters operating in phase rather than with a
phase shift of 180±. We find that, for the same
nominal parameters (as considered above), the
synchronized converters are stable for the entire
input voltage range. However, for a higher gain of
the voltage-loop controller, we observe the onset
of a fast-scale instability with a increasing input
voltage. The fast-scale instability occurs in the form
of a period-doubling bifurcation, as shown in the
bifurcation diagram in Fig. 7, which ultimately
leads to chaos as the input voltage is increased
beyond 50 V. In Fig. 8, we show the movement of
the Floquet multipliers of the period-one orbit. As
the input voltage is increased, one of the Floquet
multipliers exits the unit circle through ¡1, indicating
a period-doubling bifurcation. A second-order
nonlinear map [9] reveals that the period-doubling
bifurcation is supercritical in nature.

B. Saturated Control

Finally, we demonstrate the behavior of two
parallel-buck converters operating with a multiloop
static feedback controller under saturated conditions.
We discuss in detail only the cases when both
switches are turned off. We can extend the same
technique for the other three cases of full saturation.
In a subsequent paper, we will demonstrate how
to extend these concepts to converters operating
under partial saturation and operating with dynamic
feedback controllers. Mazumder, et al. [24] present
a sliding-mode control scheme for parallel-buck
and parallel-boost converters that guarantees
stability on all of the hyperplanes and their
intersections.
To demonstrate our point, we consider only

the Hamiltonian part of the system. The presence
of the parasitic resistors makes the system more
passive [25, 26]. In addition, we change the control
strategy from load-current equalization to line-current
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Fig. 7. Bifurcation diagram of closed-loop parallel buck converter operating in phase. It shows a fast-scale instability.

Fig. 8. One of the Floquet multipliers of period-one orbit exits the unit circle via ¡1, indicating period-doubling bifurcation.

equalization. For the buck converter, this change does
not alter the control objectives, which are to regulate
the capacitor voltage and share the load power
equally. However, with these two simple changes, we
prove our point more easily.
For the closed-loop parallel converter operating

with static-feedback controllers, the switches S1 and
S2 are turned off if the error signals of the controller
are less than zero. In this continuity region, the error
signals are given by

¾k = gvk

0@vr¡fv1vCk + gikfik
0@1
2

2X
j=1

iLj ¡ iLk

1A1A ,
k = 1,2: (60)

In (60), fvk are the feedback-sensor gains for the
output voltages, fik are the feedback-sensor gains for
the inductor currents, gvk and gik are the voltage- and
current-loop gains of the two buck-converter modules.
We choose the following Lyapunov function in the
continuity region:

V(¾1,¾2) =
1
2¾

TD¾ = 1
2(¾1 ¾2)

µ
1 0

0 1

¶
(¾1 ¾2)

T:

(61)

Therefore,

_V(¾1,¾2) = gv1

Ã
vr ¡fv1vC1 + gi1fi1

Ã
1
2

2X
j=1

iLj ¡ iL1

!!

£
µ
gv1gi1fi1
2

(_iL2 ¡ _iL1 )¡ gv1fv1 _vC1
¶

+ gv2

Ã
vr ¡fv2vC2 + gi2fi2

Ã
1
2

2X
j=1

iLj ¡ iL2

!!

£
µ
gv2gi2fi2
2

(_iL1 ¡ _iL2 )¡ gv2fv2 _vC2
¶
: (62)

Using the constraint vC1 = vC2 = vC , the equations for
the Hamiltonian system

_iLk =¡
vC
Lk
+
Sku

Lk
, 8 k = 1,2 (63a)

_vC =
2X
j=1

iLj
C1 +C2

¡ vC
(C1 +C2)R

(63b)

and assuming S1 = S2 = 0 and gains of the two
modules are the same for simplicity (i.e., gi1 = gi2 = gi,
gv1 = gv2 = gv, fi1 = fi2 = fi, and fv1 = fv2 = fv), we
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Fig. 9. Stability analysis, based on unsaturated model, predicts a stable equilibrium before and after feedforward disturbance. However,
during transients, system saturates. As a result, existence condition _V(¾1,¾2)< 0 is violated. Although error trajectories return back to
sliding manifold (as predicted and as illustrated in (b) by switching states that are sampled once in every switching cycle), transient
performance is unacceptable. Part (c) is expansion of transient region in (a) and (b). We note that, in a practical converter, the

fault-protection mechanism will shut down the converter because of large current swings. In other words, the above result demonstrates
that stability alone does not guarantee performance [24].

obtain

_V(¾1,¾2)(S1 = S2 = 0)

=
2g2v fv
C1 +C2

(vr¡fvvC)
³vC
R
¡ iL1 ¡ iL2

´
+
g2v g

2
i fi
2

µ
1
L1
¡ 1
L2

¶
(iL2 ¡ iL1 )vC: (64)

When the two modules have the same parameters,
the second term in (64) vanishes. Using (64), we can
show that when the two converters have the same
parameters, the error trajectories in the continuity
region, given by S1 = S2 = 0, will move toward the
boundary layer provided that (vC=R)> iL1 + iL2 . Now,
the closed-loop parallel converter (with the same
parameters) operates in the saturated region given by
S1 = S2 = 0 only if vr > fvvC. However, the equilibrium
solutions of (63) when S1 = S2 = 0 are iL1 = iL2 = 0
and vC = 0. Therefore, the equilibrium solution is
virtual. In other words, the closed-loop converter

cannot remain in this saturated region
permanently.
Next, we consider two cases to demonstrate

these two points. First, we consider a parallel-buck
converter with C1 = C2 = 4400 ¹F and L1 = L2 =
50 ¹H. For the second case, we change only the value
of the output capacitor to 100 ¹F. We find that the
(unsaturated) nominal solution of the converter in
case one is stable for an input voltage range of 70 V,
starting at 20 V. The converter in the second case
has a stable (unsaturated) nominal solution at 20 V.
However, the nominal solution is unstable at 90 V. Let
us assume that initially these converters are operating
in steady state with an input voltage of 20 V. We
then subject them to a feedforward disturbance so
that the final input voltage is 90 V. The disturbance
is deliberately chosen to be strong enough so that
the two switches turn off. In other words, S1 = 0 and
S2 = 0.
Fig. 9 shows the results for case one. We see that

the converter is stable before and after the feedforward
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Fig. 10. Stability analysis which predicts that, while the parallel converter is stable before the disturbance, the postdisturbance
dynamics are unstable. Inside, there is chaotic attractor inside the boundary layer (which is clearly illustrated in (b) by switching states

that never stabilize). Part (c) is an expansion of (a) and (b) in the region immediately after the disturbance.

disturbance. We predicted this based on the reaching
condition and the stability of the (unsaturated)
equilibrium solution. After the disturbance, when
the system saturates, _V(¾1,¾2) becomes positive
because (vC=R)> iL1 + iL2 . As a result, the error
trajectories move away from the boundary layer. Since
the equilibrium solution in the saturated region is
virtual, the error trajectories approach the boundary
layer when _V(¾1,¾2) is less than zero, and eventually
modulation begins. The states of the system indicate
a damped oscillatory behavior before settling down
because the nominal solution is a stable focus.3

Fig. 10 shows the results for case two. It shows
that, while the parallel converter is stable before
the disturbance, the postdisturbance dynamics are

3We note that in a practical converter, the system will shutdown due
to fault protection well before the currents attain the large values in
Fig. 9.

unstable. We know that the error trajectories cannot
stay in the saturated region given by S1 = 0 and
S2 = 0. However, inside the boundary layer, instead
of a stable nominal solution, we have a chaotic
attractor. Hence the dynamics of the converter after
the disturbance are chaotic. The switching function in
Fig. 10(b) confirms this. We also see from Fig. 10(c)
that the derivative of the Lyapunov function correctly
predicts the dynamics of the error trajectories.
We make two observation based on the results of

cases one and two. First, for the same feedforward
disturbance, the derivative of the Lyapunov function
for case two spends much less time in the saturated
region as compared with+ case one. This is because,
for the second case, the voltage across the capacitor
(for a given load), due of its smaller size, changes
more rapidly with changes in the inductor current. We
can verify this by neglecting the second term in (64).
Second, although a reduction in the capacitance gives
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Fig. 11. Properly designed parallel converter. It has excellent steady-state and transient performances.

a better dynamic response, it results in an unstable
nominal solution. In Fig. 11, we show the steady-state
and dynamic performances of the parallel converter
with L1 = L2 = 250 ¹H and C1 = C2 = 400 ¹F. This
simple compromise, guided by _V(¾1,¾2) and the
stability analysis of the nominal solution, gives a
better dynamic response.
So far we have considered identical converters.

We now consider a case in which the two converters
have about a 5% difference in the line inductance.
Converter one has a line inductance of 250 ¹H,
whereas converter two has a line inductance of
235 ¹H. The output capacitances of both converters
are chosen to be 400 ¹F. We keep the values of the
rest of the parameters, except gi, the same as those
in the other three cases. Because the inductors of the
two converters are not identical, the term representing
the differences in the two inductor currents in (64)
is important. Equation (64) shows that, unless these
terms are bounded and small, the dynamics of these
two parallel converters, even with a small variation
in the parameter of one power stage, can be vastly
different from the ideal system. In this case, one
simple way to achieve load sharing would be to keep

gi small. However, too small a value of gi would
nullify load sharing.
In Fig. 12, we show the steady-state and dynamic

performances of the parallel converter with a suitable
choice of gi. The nominal solution of the system for
the entire input voltage range is stable. Although
the values of the inductors of the two modules are
different, the performance of the system is similar
to that of the ideal case. There is, however, a minor
difference in the switching sequences. In the case
of the ideal converters, both switching states are
identical. Hence, the system switches between the
unsaturated and saturated regions given by S1 = S2 =
0. However, now, due to the parametric difference of
the converters, both of the error trajectories do not
enter or exit the boundary layer at the same time.
Hence, there is a time span during which the system is
partially saturated before it operates in the unsaturated
region. During this time, S1 is turned off while S2
modulates. We obtained the switching sequence S1 =
0, S2 = 0! S1 = 0, S2 2 (0,1)! S1 2 (0,1), S2 2 (0,1)
only because ° (= iL1 ¡ iL2 ) is constrained by a proper
choice of gi. For progressively larger values of gi, we
would obtain the switching sequences S1 = 0, S2 =
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Fig. 12. Performance of parallel converter under parametric variation. Although the two error trajectories enter the unsaturated region at
different times, a careful design consideration (based on Lyapunov function) results in a system with high performance. Part (c) is an

expansion of the transient region in (a) and (b).

1! S1 2 (0,1), S2 = 1 or S1 = 0, S2 = 1, S1 = 1, S2 = 1
after the disturbance. This results in a deterioration
of the steady-state and dynamic performance of the
system.

VI. SUMMARY AND CONCLUSION

We investigate the local and global stability
of parallel dc-dc converters in the unsaturated
and saturated regions. Using a nonlinear map, we
demonstrate the fast-scale and slow-scale instabilities
in two parallel converters. The averaged model
cannot predict the fast-scale dynamics. Using a
bifurcation analysis (with the input voltage as the
bifurcation parameter) based on a nonlinear map,

we show how the type of instability changes when
the converters operate using interleaving instead of
operating in phase. The state-space averaged model
cannot distinguish between the converters operating in
phase from those operating using interleaving. For the
interleaved converter, we show how the mechanism of
instability changes from a subcritical Hopf bifurcation
to a supercritical bifurcation as the values of the
output capacitors are decreased. Using a second-order
Poincare map, we find that the post-Hopf bifurcation
dynamics are quasiperiodic.
To determine the postbifurcation dynamics in the

vicinity of the nominal solution, one can use either a
higher order map, numerical techniques, or the normal
form of the system of equations. We used the first two
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methods for standalone converters [9]. Because the
dimensionality of the closed-loop parallel converter is,
in general, higher than that of standalone converters,
the normal form may be a better alternative. In this
paper, we have outlined a technique to generate the
normal form of a closed-loop system described by a
nonlinear map. We will discuss this methodology, in
detail, in another paper.
We also outline ways to determine the stability

of saturated regions, which we demonstrate using
two synchronized parallel buck converters. Using a
positive definite Lyapunov function, we show that,
for a fully saturated parallel converter, the dynamics
of the system in the saturated region are governed
by the derivative of the Lyapunov function. When
the derivative of the Lyapunov function is negative,
the error trajectories approach the boundary layer.
When the derivative is positive, the error trajectories
leave the saturated region. In this case, we show that
if the equilibrium solutions of the saturated regions
are virtual, these trajectories will ultimately reach the
boundary layer.
Finally, we apply these concepts of stability

for the saturated and unsaturated regions to four
cases. For the first three cases, we consider the
parameters of the parallel converters to be the
same. We show, using cases one and two, that the
nominal solution (in the unsaturated region) is
stable if and only if the dynamics of the system in
the saturated and unsaturated regions are stable.
That is why, while the postdisturbance steady-state
dynamics of the closed-loop system in case one
are stable, they are chaotic for the second case.
However, we find that the transient dynamics for
case one are much more oscillatory than those of
case two. We explain this using the derivative of
the Lyapunov function. Based on these two cases,
we show in case three how easily one can improve
the transient and steady-state performances of the
system. For the fourth case, we consider two parallel
buck converters with parametric variation. Using
(64), we show how to tune the outer-loop current
gain gi so that the performance of the nonideal
system is close to the ideal case. We also show
how and why the switching sequence changes with
increasing gi.

APPENDIX A. AVERAGE MODEL FOR TWO
PARALLEL BUCK CONVERTERS

In each switching cycle (of duration T), there
are four subintervals (see Fig. 13). The switching
sequence in each switching cycle is S1 = 1, S2 =
0! S1 = 0, S2 = 0! S1 = 0, S2 = 1! S1 = 0, S2 =
0. Using (4), we obtain the following state-space

Fig. 13. Interleaved converters.

Fig. 14. Synchronized (in-phase) converters.

equations for these four subintervals:

_Xo = Ao10X
o +Bo10u, t < t1

_Xo = Ao00X
o +Bo00u, t1 < t < t1 + t2

_Xo = Ao01X
o +Bo01u, t1 + t2 < t < t1 + t2 + t3

_Xo = Ao00X
o +Bo00u, t1 + t2 + t3 < t < T:

(65)

For the dc-dc buck converter, Ao10 = A
o
00 = A

o
01 = A

o

and Bo00 = 0. Averaging the four equations in (65)
yields

_Xo = AoXo +
³ t1
T
Bo10 +

t3
T
Bo01

´
u: (66)

The duty ratio for the two buck converters of the
parallel module are defined by d1 = t1=T and d2 =
t3=T, respectively. Rewriting (66) in terms of d1 and
d2, one obtains the following averaged model:

_Xo = AoXo + (d1B
o
10 + d2B

o
01)u: (67)

In each switching cycle (of duration T), there are four
subintervals (see Fig. 14). The switching sequence in
each switching cycle is S1 = 1, S2 = 1! S1 = 0, S2 =
1! S1 = 0, S2 = 0. Using (4), we obtain the following
state-space equations for these three subintervals:

_Xo = Ao11X
o +Bo11u, t < t1

_Xo = Ao01X
o +Bo01u, t1 < t < t1 + t2

_Xo = Ao00X
o +Bo00u, t1 + t2 < t < T:

(68)
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For the dc-dc buck converter, Ao11 = A
o
01 = A

o
00 = A

o

and Bo00 = 0. Averaging the three equations in (68)
yields

_Xo = AoXo +
³ t1
T
Bo11 +

t1 + t2
T

Bo01

´
u: (69)

The duty ratio for the two buck converters of the
parallel module are defined by d1 = t1=T and d2 =
(t1 + t2)=T, respectively. Rewriting (69) in terms of
d1 and d2, one obtains the following averaged model:

_Xo = AoXo + (d1B
o
11 + d2B

o
01)u: (70)
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