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Theoretical and Experimental Investigation of the
Fast- and Slow-Scale Instablilities of a DC-DC
Converter
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Abstract—\We use an exact formulation based on nonlinear maps the existence of solutions for this class of systems is not always
to investigate both the fast-scale and slow-scale instabilities of a well-defined. On the other hand, a discrete-time formulation of

voltage-mode buck converter operating in the continuous conduc- e swjitched-mode operation does not involve discontinuities
tion mode and its interaction with a filter. Comparing the results

of the exact model with those of the averaged model shows thedue t_o control action and results in smoc_’th _functlons that
shortcomings of the latter in predicting fast-scale instabilities. We describe the system. The last approach, which is known as the
show the impact of parasitics on the onset of chaos using a high-fre- discrete modeling technique, was first used by Prajeusl.
quency model. The experimentally validated theoretical results of [14] for power converter modeling. Later, it was used by Wood

this paper provide an improved understanding of the dynamics of 1157 ang Deane and Hamill [16] to investigate the regions of
the converter beyond the linear regime and this may lead to less

conservative control design and newer applications. the fast—scale instapility in buck convgrters operating in _t_he
continuous-conduction mode (CCM). Since then some exciting
results have been published, which extend this investigation
to a few other dc—dc converters operating in the CCM and the
discontinuous conduction mode (DCM) [17]-[26].

|. INTRODUCTION Most of the earlier work in this field dealt with idealized

OWER ELECTRONIC converters are nonlinear dynamc_ircuits and demonstrated some of the nonlinear phenomenon
Pical systems. The nonlinearities arise primarily due i such bare-bone systems. In this paper, we treat the converter

switching, power devices, and passive components, such®8s2 power-electronic system and not just as a circuit. Using

transformers, inductors, and parasitics. Historically, there hata gxac: formulailon l;:_ased tﬁn q ntonhn%arl (rjnap()js [14]_[1t6]'
been four major approaches to the modeling and analyyg etye op .3] sytst(_ama |cdme © fo (Tbo i c—tclc?/cver ers
of the switching nonlinearity in dc—dc converters. The mo@Peratng with static or dynamic feedback control. ¥ve use
widely used approach is a small-signal analysis based s methodology to investigate the fast-scale instabilities of

state-space averaging or circuit averaging using the pulse-wi igh-frequency voltage-mode buck converter that employs

modulation (PWM) switch model [1]-[4]. This approach fail ynamic-feedback control for voltage regulation and operates

to predict the fast-scale dynamics and can capture only fhethe CCM. The basic idea can, howgver, b.e easily extended
ther classes of dc—dc converters, including parallel dc—dc

slow-scale dynamics. The second approach is based on ; 26 q ale-oh fact i
sampled-data modeling technique [5]-[8]. It is an improveme(rzl(l-mvfar ers [26], an 1 €ven single-phase power-tactor-correction
over the averaged modeling technique. It takes into acco uits [13]. We validate experimentally the theoretical results

the sampling effect due to switching and can predict t ar lthg \:oltag_e-tmodetz SUth cor!vertler_. we alltso extegd k;[hlsk
boundary of the period-one instability. It is currently, howeve?,n"Jl ysiS to an integrated system nvoiving a voltage-mode buc

limited to current-mode converters and is difficult to use fof®Verter and a second-order input filter at its front end. For

analyzing chaotic dynamics. The third approach describes n?ﬁ%th cases, we compare the results obtained with the exact

switched-mode power supply using a typical continuous ti rmulation with those obtained using state-space averaged
model of the formi: = (b, u, t), where the right-hand side models and point out the shortcoming of averaged models in
is discontinuous due to ab;up;t éhanges in the contrafhis Predicting fast-scale instabilities in systems that are closer
class of models is one of the hardest to study [9]-[13]. Besidé%, conver.ters used in practice. Hamlll [27.]’ .pomted out the
shortcomings of averaged models in predicting fast-scale in-
stabilities in an idealized circuit representing a buck converter.

. . . _ The approach in this paper is systematic and can be used to
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Fig. 1. Closed-loop buck converter with a second-order filter at its front end.

Currently, most of the commercial dc—dc converters operatden .S, is closed and in the off-state (for duratida) when
at 100 kHz or above. At such high frequencies the effects of paf is open. If we represent the two states, the inductor current
asitic elements can not be ignored as has been done in the pa$t bt )] and the output capacitor voltagjé.(¢)] of the open-loop
most investigators. Therefore, in this paper we also demonstrataverter, byX(¢), then we write the system of equations
the impact of very high-frequency dynamics, due to parasitigeverning the two states as
and device nonlinearities, on the onset of chaos by developing a

high-frequency model. The parasitic parameters for this model dX(t) = A9X(t) + Blu (1a)
are obtained using a finite-element analysis package based on dt ! !

the actual printed-circuit board (PCB) of the experimental con- Vae(t) = C1X(?) (1b)
verter.

The analyses in this paper are based on systems that 1Egrreo St<Tand

close to dc—dc converters used in practice and hence, the results dX(t) ) 3

should be of interest to practicing engineers. The present results — = A3X(8) + Biu (2a)
indicate that nonlinear analyzes of power converters lead to a Vae(t) = C§X(t) (2b)

better understanding of their dynamics. With these analyzes,

one can clearly demarcate the boundaries of instabilititmr 77 < ¢ < 15, where

(without resorting to time consuming numerical simulations)

and demonstrate the fast-scale and slow-scale instabilities. This T="T+1. 3)

may lead to converters that have better design and performance. )
In (1) and (2),V4.(t) is the sum of¥.(¢) and the voltage drop

across¢. The matricesA{, A$, B{, BS, C¢, andCy in (1) and
(2) are given in Appendix I.

Initially, we assume that the nonlinearities due to the power Using (1) and (2), we derive the open-loop state-space aver-
device and parasitics are negligible. Then, we demonstrate thgjed model by taking the average of the states in the on- and off-
effect through a high-frequency model. The converter is clock@gtervals. This yields the following large-signal time-varying
at a rate equal to the switching frequency. Moreover, the cogontinuous system
troller is designed in such a way that, once a change of state

Il. M ODELING AND ANALYSIS

is latched, it can be reset only by the next clock. This effec- axX(t) . ., o N o o\ -
tively eliminates the possibility of multiple pulses. We analyze dt (Afd + A43d) X(2) + (Bid + Bid) u  (4a)
the closed-loop buck converter (without the filter) first and then Vac(t) = (Cfd + CgJ) X(t) (4b)

extend the analysis to the integrated system.

The buck converter operating under the CCM and duty-ratwhere the duty ratial = 73 /7.
control is a piecewise-smooth system. The multitopological Next we derive the exact solution of the open-loop system
system, shown in Fig. 1, is in the on-state (for duratiin by stacking the consecutive solutions of (1) and (2) over
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a switching period. The resulting discrete-time difference Using (11) and (12), we obtain the following state-space av-

equation can be written in state-space form as eraged model for the closed-loop system
X1 = ft(Xkudkvu) = (I)Edk)Xk +(di)u  (58) d‘Z(t) = [Ard + AsdU(t) + [Brd + Byl
Vde+1 = /3 (Xk’ dkvu) = 5 Xpp1 (5b) ¢ -
+ [Brld + B7‘2d]vdcref (13a)
where Vae(t) = (Crd + Cod)T(t). (13b)

O(dp) = Bo(l — dp)@1(dr), Qi(7) =7 (B) Similarly, we can write an exact discrete model for the

AT closed-loop system in the form
T(dy) = a(1 — dk)/ &, (r)B? dr b sy
Vi1 = fi(W, dy, v)

0
(1—dT)
+/ Oy (1) B3 dr. @) = )T A Ty,
0 + [CAz(l—dk)T(CAldkT _ I)(Al)_lBl

Using . (6A2<1 d)T ) (A2)*1Bz} ”
/0 et TBY dr = |:6Az — I} (AN BY 8) n |:6A2(1 GIT (AT _ [y (A)" LB,y
and (6) and (7), we simplify the expression 8y, in (5a) to + (eAz(l di)T _ ) (AQ)—lB,,Q} Vieer (14@)
Xpg1 = [ Xy, dpyou) = e22Q7dTAILT X Vae,, = Jo (Ur, dpyu) = CoWpyg. (14b)

AS(1—dy A%dy oy—1 po . . . . .-
+ AT [CAld‘T—I} (A7) " Blu The auxiliary equation for the switching condition of the

closed-loop feedback system is

a(\Ifk,dk,u) =¢- [eAldkT\I/k + (CAldkT _ I)(Al)_l
X (Blu + Brlvdcref)] - ‘/;ampdk

+ [ 4007 — 1] (49)™" Bu, 9)

To derive a model for the closed-loop system, we assume that
the mth-order, linear, time-invariant error amplifier (shown in

Fig. 1) can be modeled as =0. (15)
de(t) In (15), the termp represents the feedback controller afgl,,,
ek AL(t) + Beu + BreVacret (10a) s the magnitude of the ramp shown in Fig. 1. For example, for
Vo(t) = H.£(t) (10b) @ lag-lead controller with an integrator

where Y= wrn(o 0 w.w.e (wzl + wz?) 1)

() m X 1 state vector representing the states of thehe transfer function of the controller is

controller;
A, constant matrix; Go(s) =L (s Fwe)ls ¥ w-2)
B.and B,. m x 1 column vectors; s (s wp)(s+wp2)
H, 1 X m row vector; W (Tl + 1) (%2 + 1)
Vicrer reference voltage; = 5’ - R (16)
Ve(t) output of the error amplifier. (w_pl + ) (_ + 1)

Using (1), (2), and (10), we obtain the following equations f

%herew; is the integrator gain and., w.2,w,1, andw,» are
the closed-loop converter system g g CoEeTr L

the zeros and poles of the controller.

dW(t) AT For the filter shown in Fig. 1, the overall system analysis
ar Ot () + Bru + By1 Vacret (11a) s done by augmenting the state-space representation of the
Vae(t) = C1¥(¢t) (11b) voltage-mode converter with additional states of the filter,
V.(t) = PLU(#) (11c) which forms its fro_nt stage. In this_ paper, we hf':lve chosen
' two second-order input filters having the following output
for0 < t < T3 and impedance transfer function:
dW(t _ SQ(LfOfRfQ) + S(OfRflRfQ + Lf) + Rfl
di ) = AQ\I/(t) + BQU' + BTQVdcref (123) ZOf(S) - SQ(Lfo) + SCf(Rfl + Rf?) +1 y
Vac(t) = Co¥(t) (12b) a7)
Ve(t) = PyU(2) (12¢)
for T, < ¢ < T. The matricesA,, Ay, By, By, Bu1, By, C1, [1l. PERIOD-ONE RESPONSES ANDIHEIR STABILITY

and Cs in (11) and (12) are given in Appendix 1l. Now(¢) The fixed pointsl,, of (14) correspond to period-one limit cy-
represents the combined states of the controller and the powless of the closed-loop regulator. They can be obtained by using
stage. the constraint,; = U, = V.. LettingU = w andD = d;
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in (14), we find that the fixed points are given by (18), shownnit circle. As a control parameter, such as the input voltage, is
at the bottom of the page. Substituting (18) into (15), we olaried, we found that the fixed point loses stability by one of
tain (19), shown at the bottom of the page. The transcenderttab scenarios. In the first scenario, a Floquet multiplier exits
equation (19) is solved numerically using a combination of thbe unit circle in the complex plane throughi. The post-insta-
bisection and secant methods to determine the fixed points. fibity response is a period-two limit cycle and the bifurcation is a
ascertain the stability of a given fixed point, we perturb the norflip or a period-doubling bifurcation [28], [29]. The bifurcation
inal values(V,, D, U, Vy.,) as may be supercritical or subcritical, depending on whether the
. “ R created period-two fixed point is stable or unstable. For super-
U=+ \I/’A d=D+d uw=U+i critical bifurcations, the created period-two fixed point coexists
Vae = Vae, + Ve (20)  with the unstable period-one fixed point. On the other hand, for
Substituting (20) into (14) and (15), expanding the results ﬁy_bcritic_al bifurcations, the create_d periqd-two fixed point co-
Taylor series, and keeping first-order terms, we obtain eX|s_ts with the stable pe_rlod-one fixed pomt_. In the se_zcond sce-
nario, two complex conjugate Floguet multipliers exit the unit

Bpp1 ~ %\pk + %(gk + %u (21) circle away from the real axis. The post-instability response is
ov ad du two-period quasiperiodic and the bifurcation is a Hopf bifurca-
Vchl . %\yk + %Czk + %u (22) tion[28], [29]. The normal fqrm of the }—!opf bifurcatioq can be
ov ad u used to determine whether it is subcritical or supercritical. Al-
0~ @\pk + a_aczk + 8_o—u (23) ternatively, for supercritical bifurcations, the created quasiperi-
ov ad du odic response coexists with the unstable period-one response;
It follows from (23) that whereas for subcritical bifurcations, the created quasiperiodic
X 961" T oo . 9o response coexists with the stable period-one response.

IV. PERIOD-TWO FIXED POINTS AND THEIR STABILITY

Substituting (24) into (21) and (22) yields To investigate the behavior of the period-doubled response,

. ofi  9fL (0o 1 oo . we construct a second-order map by imposing the constraint
Vi1 ~ 9V od <%) U Wi Viio = Uy, = Wy, Using a methodology similar to that used in
. the period-one case, we construct the second-order map (27) and
Ofh  Ofi (B0 do i (28), shown at the bottom of the next page, whBie D», ¥,
Ju ad \ dd ou and¥,, are the duty ratios and states corresponding to the pe-
— H, 0, + Hyi (25) riod-two fixed points. The switching conditions are
Ve w |22 OF2 <@)_1 9o | g o1 (U1, Dy, U) = - [e Py, o (DD — 1)(A) ™
e ™ 9w ad \ad) ow| F x (ByU + By Vaeret)] — VeampD1 = 0
dfs  Ofy (o 0o . (29)
9u  ad \ad) ou|" 72 (W25, D2, U) = @ - [P0y, 4 (M P2 — [)(Ap)
—_ Hg\i/k + H41}, (26) X (BIU + Brlvdcref)] - V;ampDQ =0.

(30)
The stability of a given fixed point can be ascertained by the

eigenvalues (Floquet multipliers) éf; [28], [29]. For asymp- The procedure for determining;, D,, ¥, and ¥, is the
totic stability, all of the Floquet multipliers must be within thesame as that used for the period-one fixed point except that we

CAz(l—D)T(CAlDT _ I)(Al)—lBl> U

) _ ) -1 =+ GAQ(I_D)T -1 (AQ)_lBQ
v, = [I _ e D)TCA1DT:| 6‘42(1£D)T(6A1 pr ;)(Al)_lBrl (18)
+ < + (eAz(l—D)T _ I) (AQ)_IBTQ ) Vdcref
CAz(lfD)TCAlDT)_l
CAz(lfD)T(CAlDT _ I)(Al)lBl> U
A DT As(1—=D)T _ -1
o(¥,,D,U)=¢ |° (e T) (A2)7' By ~ ViampD = 0. (19)

L (e PT = D(A) T By
+ (6142(1—D)T _ I) (AQ)_IBTQ dcref
HeM P = (A THBLU + Byt Vacrer)



MAZUMDER et al. FAST- AND SLOW-SCALE INSTABILITIES OF A DC-DC CONVERTER 205

need two initial guesses for the duty ratios. Guesdihgand V. STABILITY ANALYSIS USING THE LINEARIZED

D,, we determinel';, and¥,, using (27) and (28) and then AVERAGED MODEL

correctD, andD; using (29) and (30). . For the averaged model, determination of the stability of the
The stability of the period-two fixed points can be determmegO

before b turbing th d forming the i zed vari eriod-one solution can be done using the loop dairof the
as betore by perturbing them and forming the linearnzed var oltage loop [30]. The loop gain of the closed-loop buck con-
tional equations

verter can be determined using
Upqo = Hy Uy, + Heid (31)

~ ~ R TL(S) = Gd(S)Gc(S)(FM)(fs) (34)
VdeJrz = H7V, + Hgi. (32)

where
Again the stability of the period-two orbit can be determined by Fp (=(1/Veamp)) modulator gain;

calculating the Floquet multipliers @f;, which can be shown ¢ (—r_/(R, + R,)) feedback sensor gain;

to be Ga(s) control to the output transfer
-1 function;
Hs = gi - % <§—a> aa—a as shown in (35) at the bottom of the page, &hds) is the
V2 dz \ 9dz Lk controller transfer function. The phase margi¥pfdetermines
ofi  of. (9 \ " oo the stability of the closed-loop system.
90, ~ od, <8—d1> a0, | (33) For the filter, the overall system analysis is done by aug-

menting the state-space system of the voltage-mode converter

For stability, all of the Floquet multipliers dfs must be within With additional states of the filter, which forms its front stage.
the unit circle. So when the period-one orbit loses stability, tHEnalysis of the stability of the augmented system is the same as
stability of the period-two orbit determines whether the perio@Pove once it is modeled with nonlinear maps. For the averaged
doubling bifurcation is supercritical or subcritical. For the Hopfodel, we use the impedance criterion approach originally pro-
bifurcation, two complex conjugate multipliers leave the unRosed by Middlebrook [31]. Stability, as per this criterion, de-
circle away from the real axis. The determination of whether tfiéands that the input impedan¢#..) of the closed-loop con-
bifurcation is subcritical or supercritical can be done by calcierter be greater than the output impeda(€g) of the input
lating the normal form of the bifurcation. An alternate method iter. For the closed-loop converter, shown in FigZ, can be

to find out whether there exists a periodic response with a perig@own to be

close to(.2.7r)/(hn()\}_10pg)) (whereApop; is the complex mul- 2 B [1+ T(5)] Zioa(s) 26
tiplier exiting the unit circle) in the neighborhood of the bifur- iel(s) = TT05) — Gils)Go(3) H(s) (FM)(A) (36)
cation point as the bifurcation parameter is increased. If so then

the Hopf bifurcation is supercritical. If not then, we can reducehere Z;.i(s), G;(s), and G,,(s) represent the transfer func-
the bifurcation parameter slowly and find out whether there atiens for the open-loop input impedance, the control to the in-
more than one stable solution by perturbing the period-one shuctor current, and the audio susceptibility, respectively. They
lution. If multiple stable solutions coexist, the Hopf bifurcatiorare given by (37)—(39), shown at the bottom of the next page. For
is subcritical. Of the multiple solutions one is the period-one seeme designs, if the strictly conservative condition for stability
lution. The others are global solutions. of the integrated system is violated, then an extended analysis

—1
Uy, = [I— oA2(1=D2)T (AL DT Az (1= DT AL DL T

A2 (1=D2)T A, DT
. (eAz(l—Dl)T(eAlDzT _ I)(Al)_lBl 4 (eAz(l—Dl)T _ I) (AQ)_lBQ) U
<+ (eAz(l—Dl)T (eAlDzT _ I) (Al)—lBrl + (eAz(l—Dl)T _ I) (AQ)—I Br2> Vdmf>
+ (eAz(lsz)T(eAlDzT _ I)(Al)ilBl + (eAz(lsz)T _ I) (Ag)ilBg) U
+ (6142(1—D2)T(6A1D2T _ I)(Al)_lBrl + (eAQ(l_D?)T _ I) (AQ)_IBTQ) Vdcref
Uy, = M- DOT DTy, (eAz(lfDl)T (eAl(lfDl)T _ I) (A1) 1B + (eAz(lfDl)T _ I) (Ag)’lBg) s

+ (GAZ(I_DI)T (GAI(I_DI)T - I) (A1)™' B + (GAZ(I_DI)T - I) (AQ)_IB’I‘Q) Vicrer (28)

(27)

R 14+ sraC

u
T R) Rirc L RtriretreR 2
LR e (R ) v (R ) L

(35)

Gals) = <
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of the minor-loop gairl;,, (=Z.:/Z;1) using the Nyquist cri- mutual inductance will become more prominent. Once the pa-

terion needs to be done [31]. rameters have been extracted, we use the SABER software to
simulate the higher-order system (Fig. 2). The snubber placed
VI. EFFECT OFPARASITICS across the diode helps with very high-frequency ringing, with

In the above model, for the closed-loop system, the impactt \e response dynamics being faster than the switching frequency

device nonlinearities and parasitic dynamics was neglected.t gzr:l;%sbg?/ ;[:rtehz Or:idir.?rgf erez?]%nlt;doe(je'[h_er;e‘g‘org\;vvgre (';;(\:/litégz
conventional commercial converters, the switching frequency E . . g q y ’ P
ed in the simulation are actual models; they are used to ac-

equal to or greater than 100 kHz. At these high frequencies, qunt for the reverse recovery effect and junction capacitances
parasitics become very important and analysis based on nomina y J P

model may not be accurate. If the switching speed of the O%s_somated with the devices.
vice (particularly the diode) is fast enough (for example using
a Schottky diode), the impact of the device nonlinearity is re-
duced to some extent as long as the duty ratio of the systenwe present a bifurcation analysis of the closed-loop buck con-
is not very small. However, the parasitic parameters vary froparter. We compare these results with those obtained by using
board to board, and hence, the parasitic dynamics are hard{g averaged model. Then, we present experimental results that
control even with a well-designed PCB. To conduct the sengjzx optained with the buck converter shown in Fig. 3. We use
tive experiments reported in this paper, we had to design the active load (in resistance mode) to study the influence of
board four times and make special arrangements to reduce 16, resistance. Moreover, we present the theoretical and exper-

commo.n-mode NOISE. . . imental results obtained for the integrated filter and converter.
The impact of these very high-frequency dynamics (coms . . .
. 7 ) . Then, we show the impact of the very high-frequency dynamics
monly called noise by practicing engineers) can be lumped Inagsociated with parasitics and device nonlinearities on the onset
a stochastic recursion relation [32], [33] P
of chaos. The system parameters for the closed-loop buck con-
Wrg1 = f1 (g, di, u) + Qpex- (40) Vverter, second-order filters, and the high-frequency models are
given in Appendix Ill. The converter we have chosen has a low
The quantity?, is a random variable controlled by an even dissutput voltage and a wide variation in the input voltage. This
tribution of unit width andy is a variable that controls the widthis a typical scenario in a telecommunication application with a
(or amplitude) of the noise. Equation (40) is identical to (14@jominal input voltage of 48 V. As such the nominal duty ratio
in the case of a deterministic quantity, . can be very low.
This approach for studying the effect of external noise on the_|n Fig. 4, we present the frequency-response func-

transition to chaos for maps has been done in the past by phygjr, obtained with the averaged model for the loop

cists [32], [33]. However, the assumption of a Gaussian diStﬂain of a voltage-mode buck converter. The controller

bution is not always valid in power-electronic systems. This Br the closed-loop system has the for@.(s) =

because the distribution is skewed, primarily due to glitches jn
e the moan and the (G55 + wa)(s + wa2)/((s + wp)(s + wpe). The
the power-converter response, and hence the mean and the me- I .
X o . worst phase margin is 20and hence the converter is stable
dian of the distribution are not the same. We consider a more

direct approach here. We extract the parameters of the high-ﬁgporqmg to the small-s.|gnal ‘?‘VGraQed model. .

quency model (based on the actual PCB layout) using the iINcaln Fig. 5, we shoyv a bifurcation diagram for thls_ closed-loop
software and high-speed design data books [34]. The INCA sofStém- The load is kept at one ohm, and the input voltage,
ware is a finite-element analysis package and gives the self Waich is the bifurcation parameter, is varied between 20 to 62 V
ductance associated with a trace and the mutual inductancedgicrements of 0.1 V. The bifurcation diagram is constructed
sociated with the coupling between traces [34]. We, howevéising the exact method and numerical techniques. The exact
neglect the mutual inductances because they are smaller thegihod works foru less than 55 V. Beyond that the system
the self inductances by at least three orders of magnitude. g&urates and hence (15) is indeterminate. To carry on, we use
the switching frequency increases to the mega Hertz range, thanerical methods. The bifurcation analysis clearly shows a

VII. RESULTS

R+re rr, R+rrro+rcR
rp+ R\ 5 LC (Riri) +s ( R+ rLiR) +1
Zia(s) = —p2 1+ sreC (37)
D(1 -« C
Guls) = 0+ src0) (38)

s2LC + s (TLO +re(l=D)C+ %) +1

D 1 g R)C
Gi(s>=< - )*D < ; ) trlet D : (39)
S R e () v (R 4 ) 1
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Fig. 2. High-frequency model of the closed-loop buck converter.
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Fig. 3. Experimental closed-loop buck converter. Fig. 4. Frequency-response analysis of the closed-loop buck converter. It

shows a stable system.

fast-scale instability, which cannot be predicted with the statpercritical. Indeed, we were able to use long-time simulation to
space averaged model. Moreover, prediction of the period-oredculate period-two orbits beyond= 53.8 V, as shown in the
slow-scale instability with the linearized averaged model is cob#urcation diagram in Fig. 5.
servative as compared to that obtained with the nonlinear averfig. 7(a) shows that the duty ratio undergoes a period-dou-
aged model. bling bifurcation asu increases beyond 53.8 V. Immediately
It follows from Fig. 5 that the period-one orbits are stable faafter the period-doubling bifurcation, all of the Floquet multi-
all values of the input voltage below 53.8 V. All of the Floquet pliers of the second-order map are within the unit circle: three
multipliers are within the unit circle. Ag increases past 53.8 V, of them are well within the unit circle and two are real and near
one of the Floquet multipliers exits the unit circle through, 1 + 0z, as shown in Fig. 7(b). In Fig. 7(c), we show the move-
as shown in Fig. 6, indicating a period-doubling or flip bifurment of the latter multipliers asincreases. They approach each
cation. To study the stability of the created period-doubled awther, collide, and move away from the real axis. It follows from
bits, we calculated the Floquet multipliers based on the secorkdg. 7(a) that as: approaches = u. = 54.48 V, one of the
order map foru = 53.8 V. The result is[0.1288,0.8302 + duty ratios approaches zero anduat w. the error signaV,
0.0389¢, 0.8302—0.0389¢,0.9039, 0.9911]. Because all of these hits the ramp at the bottom, as shown in Fig. 7(d). As such, the
multipliers are inside the unit circle, the created period-two osystem saturates, which we have confirmed experimentally. This
bits are stable, and hence the period-doubling bifurcation is saturation or pulse dropping initiates the chaos, which is called
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Fig. 5. Numerically obtained bifurcation diagram of the closed-loop buck converter. It shows a fast-scale instability.

border collision bifurcation by Nusse et al. [35] and Bannerje
et al. [21], [36]. Researchers in other fields have also report
similar nonsmooth bifurcations e.g., C-bifurcations in Filippo
systems [37], [38] and grazing bifurcation in impacting systen
[39]-[41]. In the saturated region, the second-order map usec
derive (27) and (28) becomes invalid. As such, we are unal
to plot the movement of the Floquet multipliers any more. Fc
further increase in the input voltage, the response of the syst
becomes chaotic, which is shown in Fig. 5.

Once chaos is initiated, we resort to time-domain simulatic
using the switching model. In [42] the concept of impact ma
has been proposed. However, for the chaotic region, where
switching instant is unknown, the difference in the computatic 06
time between the simulation and the approach based on the
pact map is negligible. It follows from the bifurcation diagran
in Fig. 5 that initially chaos is confined to two small bands N o8 o8 o4 w02 o oz o4 os o8 1
As u is increased, the two chaotic bands increase in size ut Real (Period-1 Floquet-Multipliers)
they collide with the unstable period-one response, resulting
a single large chaotic attractor in a so-called attractor—mergiﬁ'g'
crisis [28]. ’

We now explain, qualitatively, the transition in the response Wheref —1/T,A= A, = A»,B = B, andB, = B, =
the closed-loop converter from a period-two orbit to a chaotic a]g;ﬂ_ Equation (41) shows that whéf(¢) = V;.(), thend /dt
tractor in the vicinity ofu = u. by using Filippov’'s theqry [10]. is undefined. However, as long & < V.(t) < Vi + Viamp at
Hoyvever, to proce_ed further, we use (11), (12) and Fig. 1, to qﬁ'e point of impact with the ramp, the latching action of our con-
scribe the dynamics of the states of the closed-loop buck cqpsyer ensures only a single turn-on and a single turn-off of the
verter as a differential equation with discontinuous ”ght'ha%werswitch in a switching cycle. As such, one can describe the

Imag (Period-1 Floquet-Multipliers)

6. One of the period-one Floguet multipliers exits the unit circle through
indicating a period-doubling bifurcation.

side; that is, dynamics of the system using a nonlinear discrete map, thereby
eliminating the discontinuity. One such map is used to obtain
dchlit) = AU(t) + BS,1(t) + B, Vaerer (27) and (28). The general form of this map is
Si(t) = 1+ Sign(Veé(t) — V(1) Upro = (Da®3Pa®, )Wy
+ (DsP3P2A; + CuP3As + Pz + Ay)u

1+ sign (Vo(t) — Vi — Viampmod (£) f)

= 5 (41) + (@4P3P2T1 + PuP3T2 + P45 + Tu) Vicrer
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Fig. 7. (a) Variation of the duty ratio and (b) the magnitudes of the Floquet multipliers with the input voltage in the period-two region. (c) Twdoofuttte F
multipliers in (b) first collide with each other and then move toward the imaginary axis. (d) The error signal hits the ramp at the lowest poingfanthg be
the switching cycle) and the closed-loop system saturates.

Vierpe = P1Vpq2 the fixed point. It is obvious that in the vicinity of saturation,
0= o1 (U, dyy, u) the two maps (given by (42) and (43)) that describe the same
0 = s (W, dug, dok, ) (42) system have different forms. Let~ and.J* be the Jacobian
TR e matrices that are obtained by linearizing (42) and (43) in the
where®,, A,, T,, and P, are matrices, and the last two scala¥icinity of the saturation point. Depending on the values/of
equations describe the switching conditions. Wheft) = V; andJ* in the neighborhood of the saturation point, we can have
(or ‘/I + eramp) at the point of impact with the ramp, (e_g_,tWO different sets of Floquet multlpllergM_ andFM+). In
Fig. 7(d)), the system saturates and hence (42) fails. Usiagmooth system, the transition frdmM~ to FM™ is always

Fig. 7(d), we therefore construct another map as gradual. However, this is not the case in a nonsmooth system;
it has many other other bifurcations than a smooth system [28].

Vigo = (23P2P1) V3 + (230241 + P3Ar + As)u The bifurcation diagram in Fig. 5 shows one such case, where

+ (23891 4+ P39 + X3) Vaerer chaos occurs due to saturation immediately after a period-dou-

bling bifurcation. Although the Floquet multipliers are defined
before and after the saturation point, they are not defined at this
point. The Floquet multipliers at this point are obtained from the

where®s, A, and Y are matrices. The nonlinear map (43) i§et—\{alued Jacobia_n matrjkz_[J—, JT]. The viable solut_ions
valid at the point given by.(#) = V; and in the vicinity of of this set are obtained by using the concept of convexity [10],

Vaciyr = P22
0201(\I/k,d1k,u) (43)
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Fig. 8. Experimental waveforms for (a) period-one and (b) chaotic responses.

as shown in Appendix IV (for a differential equation with disties. The high-frequency model is developed using actual de-
continuous right-hand side). vice models and parasitic parameters obtained using the actual
In Fig. 8, we show the experimental results we obtained f®CB layout. The parasitic parameters are obtained from the PCB
the converter in the stable and unstable regions with the inuging the finite-analysis pacakage INCA. In Fig. 9, we present
voltage as the bifurcation parameter. In Fig. 8(a), we showtlae Fourier spectra of the bus voltage for two separate cases:
stable period-one response. Ass increased to 52.6 V, the re-one based on the high-frequency model and the other based on
sponse becomes chaotic, as shown in Fig. 8(b), without unddre nominal model, as shown in Fig. 1. These simulation results
going a period-doubling bifurcation as predicted by the theorglearly indicate that the unmodeled uncertainties due the very
To explain this discrepancy, we used the high-frequency modeigh-frequency dynamics cause the earlier onset of chaos.
shown in Fig. 2, to account for the impact of the very high- Interestingly, the chaotic response is stable, and the ripple in
frequency dynamics due to parasitics and device nonlineatie output voltage caused by chaos is tolerable, as seen from the
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V. Hence, both the averaged and discrete models predict the
slow-scale instability.

The experimental result in Fig. 12(d) show that the response
of the system suddenly bursts into an oscillation as the input
voltage was gradually reduced below the point of instability.
Beyond the point of instability, the current is not always in
L.\,V\WWWWW'\J-_\,\, A A the CCM as seen from the theoretical and experimental results
shown in Figs. 12(b) and (c). To analyze the dynamics beyond
this point of instability, we had to switch between the CCM and
DCM models. The CCM model was augmented with one more
2000 3 : ‘ : : : additional topology in which both the switchy and diodeD,

0s 200k ok 0.0k 80.0x 1000k 1200k are off. In other words, the system of (5) is modified as
Frequency (Hz) -

100.0 5

dB d
bl
°
s

«100.0

>

Xig1 = Ca(ta)Pa(t2)P1(t1) X

Fig. 9. Impact of parasitics on the onset of chaos. Fourier spectra of the output
voltage based on the nominal model (bottom trace) and on the high-frequency +
model (top trace). The latter predicts an earlier onset of chaos.

@3(t3)‘1>2(t2) /Otn ‘I)l(T)Bl d’/’

t12
+ (I)g(tg)/ (I)Q(T)BQ dr

I s e e e AmEEE R haa tiy

T
+ / (I)g(T)Bg d’/’

ti2

up,

Vaeior = O3 Xi1 (44)

Inductor Cusrent (SA/div)

where®; (1) = %7 [k = 1,3] andt, = t;; = dy Tty =

t12 — t11,t3 = 1 — t12. The additional state-space matrices
Ag, B, andC¥ required for the DCM model are listed in Ap-
pendix II. In (4) the duty ratio is calculated as before. The ad-
ditional timing information needed is the instant at which the
inductor goes to zero in the discharging mode.

Next, we present the results obtained for an integrated system,
which comprises the buck converter and a second-order filter at
its front end. A complete bifurcation analysis for this case can
be found in [23]. We consider two separate cases as before. The
firstis a stable integrated system based on the stability criterion
of Middlebrook. The other is a poorly designed filter. The fre-
Fig. 10. Experimental result shows the influence of a transient-load change%lr'%e_ncy-response pIOtS @t and Zo for both C‘_’jlse,s are_ shown
the chaotic attractor. in Figs. 13(a) and (b). For the second case, in line with the re-
sult obtained for the standalone converter, we found that the

experimental waveforms. We also performed a d namic-logg‘)w'scale instability can be predicted by both the averaged and
P i P Y onlinear models. Fig. 14(a) shows that when the input voltage

test when the converter is in the chaotic region, and the resull'2

shown in Fig. 10. The load resistance was changed by 150% |segradually reduced, the slow-scale instability occurs due to a

riodically every 1 ms. The test results show that chaos is stable(?lmc bifurcation. Using the normal form of the large-signal av-

Within the chaotic region, we found narrow windows of pec_araged model in the vicinity of the bifurcation point, we found

- o that the Hopf bifurcation is subcritical in nature. The averaged
riodic responses. Two such periodic waveforms are shown in : . . .

) model, however, fails to predict the fast-scale instability in the
Figs. 11(a) and (b).

Next, we demonstrate the slow-scale instability in the bucg(rst case, which is predicted by the nonlinear analysis and ob-

converter. The controller for the closed-loop systems has tﬁ%rved experimentally as shown in Fig. 14(b).
form G.(s) = (wr/s)(s + w.1)/(s + wp1). The frequency-re-

sponse function for this case is shown in Fig. 12(a) for input
voltages ranging from 20 to 62 V. The load resistance wasUsing an exact formulation based on nonlinear maps, we
kept constant at 5. For the nonlinear model, given the saménvestigate the fast-scale and slow-scale instabilities of a
system parameters, we found that two of the Floquet multiplieckosed-loop converter and predicted the boundaries of these
[0.3119,1.00001 + 0.0899:,1.000 01 — 0.0899¢,0.9533] exit instabilities. For the standalone converter, the fast-scale in-
the unit circle as complex conjugates at an input voltage of 3fability results in a supercritical period-doubling bifurcation

I T

Ripple

Output Voltage

(Ch {1\ E— Y ]11T 30 1) B
Math1 50.0mv 1.00ms

VIIl. SUMMARY AND CONCLUSION
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Fig. 11. Experimental result shows (a) period-4 and (b) period-3 waveform within the chaotic region.

followed by an intermittency of type-l route to chaos. Thdon of the period-one orbits near the bifurcation point. Using a
averaged model does not predict the boundary of the period-gm@linear analysis [23], we find that the domain of attraction of
instability correctly. Moreover, it can not account for post-inthe period-one orbits reduces considerably even before the Hopf
stability dynamics. bifurcation point due to the simultaneous presence of two stable
We find similar results for an integrated system consisting ofamd one unstable solutions. This reduces the disturbance rejec-
second-order filter and a converter. We investigate two such inten capability of the closed-loop system in this region. Con-
grated systems: one is stable as per Middlebrook’s criterion [34gntional methods based on small-signal averaged-model tech-
and the other is unstable. We find that this criterion fails to preiques do not show this reduction in the domain of attraction.
dict the fast-scale instability for the first design. For the second The impact of parasitics on the onset of chaos is studied using
design, which is unstable on the slow scale, this criterion (whiehhigh-frequency model. The model is developed based on an
is based on linear analysis) does not give the domain of attractual PCB layout and power-device models. We find that the
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Fig. 12. Slow-scale instability of the closed-loop buck converter. (a) and (b) Linear and nonlinear analyses, which show an unstable respergperiftieftal
result that verifies the result in (b). (d) An experimental result that shows the onset of a sudden slow-scale instability as the input voltaten(pifwameter)
is changed.

onset of chaos on the fast scale occurs earlier due to parasiticean operate close to its fast-scale instability boundary. This
However, it has negligible impact on the slow-scale instabilityill give the system a much higher bandwidth than that obtained
This is confirmed experimentally. The boundedness of the nesing conventional designs. Thus by analyzing the nonlinear dy-
sponse in the chaotic region under transient-load conditionsimmics beyond the period-one region, one can improve the per-
confirmed experimentally. formance of the converter and correctly predict the boundaries

The closed-loop converter system should be designed to gfithe instabilities. To extend the period-one operating regime,
erate away from the slow-scale instability boundary. Howevame can use bifurcation control.
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APPENDIX |
STATE-SPACE MATRICES FOR THE OPEN-LOOP
Buck CONVERTER

r_ " roR _ R q
A% = L (Rt+rc)L (R+rc)L
1= R 1
L (R+rc)C (R+rc)C
ri
o _ | T, o _ [ roR R
By = 6:| e [RiTC' R+rc |
- "L _rcR ___ R -
AO _ L (R—|—’I’(})L (R—|—’I’(})L
2 = R 1
- (R-I—’I‘(})C (R-I—’I‘(})C J
o 0 o ro
By = 0}’ G5 =x7fe ool
[0 0 0
AO = 1 :| ; BO = |: :| .
Lo o ®EreT °[o
Cg = [ }%j_’m %m] (for DCM only)
APPENDIX I

Results of an integrated filter-converter system based on small-signal
analysis. The frequency-response analyses based on Middlebrook’s criterion

STATE-SPACE MATRICES FOR THECLOSED-LOOP
Buck CONVERTER

_[ 47 o _ | By _|0
Al — _SCf Ac:| ’ Bl — |: 0 :| ’ Brl — |:Brc:|

Ci=[C 0, Hi=[H 0
. [ A$ 0 | B3 10
AQ — _fscg Ac:| ’ B2 — |: 0 :| ’ B1’2 — |:Brc:|

Cy=[C3 0], Ho=[H, 0]

. [ Af 0 | B3 10
A3 — _fscg Ac:| ’ B3 — |: 0 :| ’ B1’3 — |:Brc:|
Cy=[C3 0], Hs=[H. 0] (for DCM only)

wheref; is the feedback sensor gain.

APPENDIX Il
PARAMETERS OF THECLOSED-LOOP SYSTEM

Nominal model parameters

L =50 puH,
Cr = 4400 pF,

ry = 21 mE,
R =10-50Q.

re =21 me,

High-frequency model parameters

r,=21mQ, re=42mQ, L =50 uH,

Cy = 2200 uF, C5 =2200 uF, Cp = 30pF,
Ly =25nH, R, =150m, Ls=>5nH,
R3=25mQ, Cy=100nF, C5=100nF,
R; =50m, L;=15nH.

Filter parameters

Ly =200 pH, Ry =100mSQ, Ry =21me,
Cj = 440 pF.
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APPENDIX IV
FILIPPOV'S SOLUTION FOR A DISCONTINUOUSDIFFERENTIAL
EQUATION
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Let us consider the following vector differential equation: mentation.

v =flyt,u(y) = by, 1) (A1)

(1]
whereh : R x R* — R™ is measurable and essentially locally
bounded. A vector function(t), defined on the intervdk , ¢2),
is a Filippov solution [10] of (A1) if it is absolutely continuous
and, for almost alk € (¢1,%2) and for arbitrarys > 0, the
vectordy(t)/dt belongs to the smallest convex closed set of an

n-dimensional space containing all of the values of the vector

(2]

(3]

function h(¢,7/); wherey/ ranges over the entir& neighbor- 4]
hood of the point(t) in the spacey (with ¢ fixed) except for a
set of measurgN = 0; that is [8]
dy(t
W) ¢ Kinl(wn (o)
dt
(7]
whereK[h](-) is called the Filippov’s differential inclusion and
is defined as (8]
KRty =() [) ©h(B(y,8)—-N). (A3) [
>0 uN>0 [10]

In differential inclusion (A2)co denotes the convex hull of a [11]
set, N represents a set of zero Lebesgue meaguteandB 15
is a ball of radiusé centered aty. The content of Filippov’s
solution is that the tangent vector to a solution at a tinvehere
it exists, must lie in the convex closure of the limiting values of}; 5,
the vector field in progressively smaller neighborhoods around
the solution evaluated at tinte

Let us now consider a single switching surfade which is
a smooth surface (manifold) separating the space into regions
H*t andH~. Suppose thall is regular so that it can be divided [15]
by a smooth real-valued functiar(y) (i.e. H = {y : o(y) = 1]
0 = 0} and suppose thdi(¢, %) is bounded and, for any fixed
t, its limiting valuesh™* (y, t) andh~ (¥, t) exist whenH is ap-
proached fromH* and H—. Let hf (¢, %) andhg (y,t) be the
projections ofh ™ (y,t) andh~(y,t) on the normaN ¢ to the
surfaceH directed toward? + andH —. Then, for an absolutely
continuousy € H satisfyinghd (y,#) < 0,k (y,t) > 0, and
ks (y,t) — h (v, 1) > 0, the trajectories pointing towatd are
solutions of (A1) according to the differential inclusion (A2) if
and only if

(14]

[17]

(18]

[19]

[21]
W= Bt + Q- HO () (Ad
[22]
where
_ [23]
B(t) = hg (y,0) (A5)

hO_ (y7 t) - h(—)i—(yv t) '

We note that the right-hand side of (A4) is orthogonaMe
and hence the solution remains on the surfice

[24]
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