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Theoretical and Experimental Investigation of the
Fast- and Slow-Scale Instabilities of a DC–DC

Converter
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Abstract—We use an exact formulation based on nonlinear maps
to investigate both the fast-scale and slow-scale instabilities of a
voltage-mode buck converter operating in the continuous conduc-
tion mode and its interaction with a filter. Comparing the results
of the exact model with those of the averaged model shows the
shortcomings of the latter in predicting fast-scale instabilities. We
show the impact of parasitics on the onset of chaos using a high-fre-
quency model. The experimentally validated theoretical results of
this paper provide an improved understanding of the dynamics of
the converter beyond the linear regime and this may lead to less
conservative control design and newer applications.

Index Terms—Bifurcation, converters, differential inclusion, dis-
continuous systems.

I. INTRODUCTION

POWER ELECTRONIC converters are nonlinear dynam-
ical systems. The nonlinearities arise primarily due to

switching, power devices, and passive components, such as
transformers, inductors, and parasitics. Historically, there have
been four major approaches to the modeling and analysis
of the switching nonlinearity in dc–dc converters. The most
widely used approach is a small-signal analysis based on
state-space averaging or circuit averaging using the pulse-width
modulation (PWM) switch model [1]–[4]. This approach fails
to predict the fast-scale dynamics and can capture only the
slow-scale dynamics. The second approach is based on the
sampled-data modeling technique [5]–[8]. It is an improvement
over the averaged modeling technique. It takes into account
the sampling effect due to switching and can predict the
boundary of the period-one instability. It is currently, however,
limited to current-mode converters and is difficult to use for
analyzing chaotic dynamics. The third approach describes the
switched-mode power supply using a typical continuous time
model of the form , where the right-hand side
is discontinuous due to abrupt changes in the control. This
class of models is one of the hardest to study [9]–[13]. Besides,
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the existence of solutions for this class of systems is not always
well-defined. On the other hand, a discrete-time formulation of
the switched-mode operation does not involve discontinuities
due to control action and results in smooth functions that
describe the system. The last approach, which is known as the
discrete modeling technique, was first used by Prajouxet al.
[14] for power converter modeling. Later, it was used by Wood
[15] and Deane and Hamill [16] to investigate the regions of
the fast-scale instability in buck converters operating in the
continuous-conduction mode (CCM). Since then some exciting
results have been published, which extend this investigation
to a few other dc–dc converters operating in the CCM and the
discontinuous conduction mode (DCM) [17]–[26].

Most of the earlier work in this field dealt with idealized
circuits and demonstrated some of the nonlinear phenomenon
in such bare-bone systems. In this paper, we treat the converter
as a power-electronic system and not just as a circuit. Using
an exact formulation based on nonlinear maps [14]–[16],
we develop a systematic method to model dc–dc converters
operating with static or dynamic feedback control. We use
this methodology to investigate the fast-scale instabilities of
a high-frequency voltage-mode buck converter that employs
dynamic-feedback control for voltage regulation and operates
in the CCM. The basic idea can, however, be easily extended
to other classes of dc–dc converters, including parallel dc–dc
converters [26], and even single-phase power-factor-correction
circuits [13]. We validate experimentally the theoretical results
for the voltage-mode buck converter. We also extend this
analysis to an integrated system involving a voltage-mode buck
converter and a second-order input filter at its front end. For
both cases, we compare the results obtained with the exact
formulation with those obtained using state-space averaged
models and point out the shortcoming of averaged models in
predicting fast-scale instabilities in systems that are closer
to converters used in practice. Hamill [27], pointed out the
shortcomings of averaged models in predicting fast-scale in-
stabilities in an idealized circuit representing a buck converter.
The approach in this paper is systematic and can be used to
investigate slow- and fast-scale instabilities in any other class
of dc–dc converters [26]. It can also be applied to systems with
static- or dynamic-feedback control, or multiloop control with
minimal changes. For example, in [26], we have extended the
methodology to parallel dc–dc converters. Unlike [27], the
analysis in this paper includes the effect of the parasitics in the
nominal model and extends the methodology to analyze the
stability of an integrated converter.

0885–8993/01$10.00 © 2001 IEEE
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Fig. 1. Closed-loop buck converter with a second-order filter at its front end.

Currently, most of the commercial dc–dc converters operate
at 100 kHz or above. At such high frequencies the effects of par-
asitic elements can not be ignored as has been done in the past by
most investigators. Therefore, in this paper we also demonstrate
the impact of very high-frequency dynamics, due to parasitics
and device nonlinearities, on the onset of chaos by developing a
high-frequency model. The parasitic parameters for this model
are obtained using a finite-element analysis package based on
the actual printed-circuit board (PCB) of the experimental con-
verter.

The analyses in this paper are based on systems that are
close to dc–dc converters used in practice and hence, the results
should be of interest to practicing engineers. The present results
indicate that nonlinear analyzes of power converters lead to a
better understanding of their dynamics. With these analyzes,
one can clearly demarcate the boundaries of instabilities
(without resorting to time consuming numerical simulations)
and demonstrate the fast-scale and slow-scale instabilities. This
may lead to converters that have better design and performance.

II. M ODELING AND ANALYSIS

Initially, we assume that the nonlinearities due to the power
device and parasitics are negligible. Then, we demonstrate their
effect through a high-frequency model. The converter is clocked
at a rate equal to the switching frequency. Moreover, the con-
troller is designed in such a way that, once a change of state
is latched, it can be reset only by the next clock. This effec-
tively eliminates the possibility of multiple pulses. We analyze
the closed-loop buck converter (without the filter) first and then
extend the analysis to the integrated system.

The buck converter operating under the CCM and duty-ratio
control is a piecewise-smooth system. The multitopological
system, shown in Fig. 1, is in the on-state (for duration)

when is closed and in the off-state (for duration) when
is open. If we represent the two states, the inductor current

and the output capacitor voltage of the open-loop
converter, by , then we write the system of equations
governing the two states as

(1a)

(1b)

for and

(2a)

(2b)

for , where

(3)

In (1) and (2), is the sum of and the voltage drop
across . The matrices , and in (1) and
(2) are given in Appendix I.

Using (1) and (2), we derive the open-loop state-space aver-
aged model by taking the average of the states in the on- and off-
intervals. This yields the following large-signal time-varying
continuous system

(4a)

(4b)

where the duty ratio .
Next we derive the exact solution of the open-loop system

by stacking the consecutive solutions of (1) and (2) over
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a switching period. The resulting discrete-time difference
equation can be written in state-space form as

(5a)

(5b)

where

(6)

(7)

Using

(8)

and (6) and (7), we simplify the expression for in (5a) to

(9)

To derive a model for the closed-loop system, we assume that
the th-order, linear, time-invariant error amplifier (shown in
Fig. 1) can be modeled as

(10a)

(10b)

where
state vector representing the states of the

controller;
constant matrix;

column vectors;
row vector;

reference voltage;
output of the error amplifier.

Using (1), (2), and (10), we obtain the following equations for
the closed-loop converter system

(11a)

(11b)

(11c)

for and

(12a)

(12b)

(12c)

for . The matrices ,
and in (11) and (12) are given in Appendix II. Now
represents the combined states of the controller and the power
stage.

Using (11) and (12), we obtain the following state-space av-
eraged model for the closed-loop system

(13a)

(13b)

Similarly, we can write an exact discrete model for the
closed-loop system in the form

(14a)

(14b)

The auxiliary equation for the switching condition of the
closed-loop feedback system is

(15)

In (15), the term represents the feedback controller and
is the magnitude of the ramp shown in Fig. 1. For example, for
a lag-lead controller with an integrator

The transfer function of the controller is

(16)

where is the integrator gain and , and are
the zeros and poles of the controller.

For the filter shown in Fig. 1, the overall system analysis
is done by augmenting the state-space representation of the
voltage-mode converter with additional states of the filter,
which forms its front stage. In this paper, we have chosen
two second-order input filters having the following output
impedance transfer function:

(17)

III. PERIOD-ONE RESPONSES ANDTHEIR STABILITY

The fixed points of (14) correspond to period-one limit cy-
cles of the closed-loop regulator. They can be obtained by using
the constraint . Letting and
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in (14), we find that the fixed points are given by (18), shown
at the bottom of the page. Substituting (18) into (15), we ob-
tain (19), shown at the bottom of the page. The transcendental
equation (19) is solved numerically using a combination of the
bisection and secant methods to determine the fixed points. To
ascertain the stability of a given fixed point, we perturb the nom-
inal values as

(20)

Substituting (20) into (14) and (15), expanding the results in
Taylor series, and keeping first-order terms, we obtain

(21)

(22)

(23)

It follows from (23) that

(24)

Substituting (24) into (21) and (22) yields

(25)

(26)

The stability of a given fixed point can be ascertained by the
eigenvalues (Floquet multipliers) of [28], [29]. For asymp-
totic stability, all of the Floquet multipliers must be within the

unit circle. As a control parameter, such as the input voltage, is
varied, we found that the fixed point loses stability by one of
two scenarios. In the first scenario, a Floquet multiplier exits
the unit circle in the complex plane through . The post-insta-
bility response is a period-two limit cycle and the bifurcation is a
flip or a period-doubling bifurcation [28], [29]. The bifurcation
may be supercritical or subcritical, depending on whether the
created period-two fixed point is stable or unstable. For super-
critical bifurcations, the created period-two fixed point coexists
with the unstable period-one fixed point. On the other hand, for
subcritical bifurcations, the created period-two fixed point co-
exists with the stable period-one fixed point. In the second sce-
nario, two complex conjugate Floquet multipliers exit the unit
circle away from the real axis. The post-instability response is
two-period quasiperiodic and the bifurcation is a Hopf bifurca-
tion [28], [29]. The normal form of the Hopf bifurcation can be
used to determine whether it is subcritical or supercritical. Al-
ternatively, for supercritical bifurcations, the created quasiperi-
odic response coexists with the unstable period-one response;
whereas for subcritical bifurcations, the created quasiperiodic
response coexists with the stable period-one response.

IV. PERIOD-TWO FIXED POINTS AND THEIR STABILITY

To investigate the behavior of the period-doubled response,
we construct a second-order map by imposing the constraint

. Using a methodology similar to that used in
the period-one case, we construct the second-order map (27) and
(28), shown at the bottom of the next page, where ,
and are the duty ratios and states corresponding to the pe-
riod-two fixed points. The switching conditions are

(29)

(30)

The procedure for determining , and is the
same as that used for the period-one fixed point except that we

(18)

(19)



MAZUMDER et al.: FAST- AND SLOW-SCALE INSTABILITIES OF A DC–DC CONVERTER 205

need two initial guesses for the duty ratios. Guessingand
, we determine and using (27) and (28) and then

correct and using (29) and (30).
The stability of the period-two fixed points can be determined

as before by perturbing them and forming the linearized varia-
tional equations

(31)

(32)

Again the stability of the period-two orbit can be determined by
calculating the Floquet multipliers of , which can be shown
to be

(33)

For stability, all of the Floquet multipliers of must be within
the unit circle. So when the period-one orbit loses stability, the
stability of the period-two orbit determines whether the period-
doubling bifurcation is supercritical or subcritical. For the Hopf
bifurcation, two complex conjugate multipliers leave the unit
circle away from the real axis. The determination of whether the
bifurcation is subcritical or supercritical can be done by calcu-
lating the normal form of the bifurcation. An alternate method is
to find out whether there exists a periodic response with a period
close to (where is the complex mul-
tiplier exiting the unit circle) in the neighborhood of the bifur-
cation point as the bifurcation parameter is increased. If so then
the Hopf bifurcation is supercritical. If not then, we can reduce
the bifurcation parameter slowly and find out whether there are
more than one stable solution by perturbing the period-one so-
lution. If multiple stable solutions coexist, the Hopf bifurcation
is subcritical. Of the multiple solutions one is the period-one so-
lution. The others are global solutions.

V. STABILITY ANALYSIS USING THE LINEARIZED

AVERAGED MODEL

For the averaged model, determination of the stability of the
period-one solution can be done using the loop gainof the
voltage loop [30]. The loop gain of the closed-loop buck con-
verter can be determined using

(34)

where
modulator gain;
feedback sensor gain;
control to the output transfer
function;

as shown in (35) at the bottom of the page, and is the
controller transfer function. The phase margin ofdetermines
the stability of the closed-loop system.

For the filter, the overall system analysis is done by aug-
menting the state-space system of the voltage-mode converter
with additional states of the filter, which forms its front stage.
Analysis of the stability of the augmented system is the same as
above once it is modeled with nonlinear maps. For the averaged
model, we use the impedance criterion approach originally pro-
posed by Middlebrook [31]. Stability, as per this criterion, de-
mands that the input impedance of the closed-loop con-
verter be greater than the output impedance of the input
filter. For the closed-loop converter, shown in Fig. 1, can be
shown to be

(36)

where , and represent the transfer func-
tions for the open-loop input impedance, the control to the in-
ductor current, and the audio susceptibility, respectively. They
are given by (37)–(39), shown at the bottom of the next page. For
some designs, if the strictly conservative condition for stability
of the integrated system is violated, then an extended analysis

(27)

(28)

(35)
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of the minor-loop gain using the Nyquist cri-
terion needs to be done [31].

VI. EFFECT OFPARASITICS

In the above model, for the closed-loop system, the impact of
device nonlinearities and parasitic dynamics was neglected. In
conventional commercial converters, the switching frequency is
equal to or greater than 100 kHz. At these high frequencies, the
parasitics become very important and analysis based on nominal
model may not be accurate. If the switching speed of the de-
vice (particularly the diode) is fast enough (for example using
a Schottky diode), the impact of the device nonlinearity is re-
duced to some extent as long as the duty ratio of the system
is not very small. However, the parasitic parameters vary from
board to board, and hence, the parasitic dynamics are hard to
control even with a well-designed PCB. To conduct the sensi-
tive experiments reported in this paper, we had to design the
board four times and make special arrangements to reduce the
common-mode noise.

The impact of these very high-frequency dynamics (com-
monly called noise by practicing engineers) can be lumped into
a stochastic recursion relation [32], [33]

(40)

The quantity is a random variable controlled by an even dis-
tribution of unit width and is a variable that controls the width
(or amplitude) of the noise. Equation (40) is identical to (14a)
in the case of a deterministic quantity .

This approach for studying the effect of external noise on the
transition to chaos for maps has been done in the past by physi-
cists [32], [33]. However, the assumption of a Gaussian distri-
bution is not always valid in power-electronic systems. This is
because the distribution is skewed, primarily due to glitches in
the power-converter response, and hence the mean and the me-
dian of the distribution are not the same. We consider a more
direct approach here. We extract the parameters of the high-fre-
quency model (based on the actual PCB layout) using the INCA
software and high-speed design data books [34]. The INCA soft-
ware is a finite-element analysis package and gives the self in-
ductance associated with a trace and the mutual inductances as-
sociated with the coupling between traces [34]. We, however,
neglect the mutual inductances because they are smaller than
the self inductances by at least three orders of magnitude. As
the switching frequency increases to the mega Hertz range, the

mutual inductance will become more prominent. Once the pa-
rameters have been extracted, we use the SABER software to
simulate the higher-order system (Fig. 2). The snubber placed
across the diode helps with very high-frequency ringing, with
the response dynamics being faster than the switching frequency
dynamics by three orders of magnitude. Therefore, we include
the snubber in the high-frequency model. The power devices
used in the simulation are actual models; they are used to ac-
count for the reverse recovery effect and junction capacitances
associated with the devices.

VII. RESULTS

We present a bifurcation analysis of the closed-loop buck con-
verter. We compare these results with those obtained by using
the averaged model. Then, we present experimental results that
we obtained with the buck converter shown in Fig. 3. We use
an active load (in resistance mode) to study the influence of
load resistance. Moreover, we present the theoretical and exper-
imental results obtained for the integrated filter and converter.
Then, we show the impact of the very high-frequency dynamics
associated with parasitics and device nonlinearities on the onset
of chaos. The system parameters for the closed-loop buck con-
verter, second-order filters, and the high-frequency models are
given in Appendix III. The converter we have chosen has a low
output voltage and a wide variation in the input voltage. This
is a typical scenario in a telecommunication application with a
nominal input voltage of 48 V. As such the nominal duty ratio
can be very low.

In Fig. 4, we present the frequency-response func-
tion obtained with the averaged model for the loop
gain of a voltage-mode buck converter. The controller
for the closed-loop system has the form

. The
worst phase margin is 20, and hence the converter is stable
according to the small-signal averaged model.

In Fig. 5, we show a bifurcation diagram for this closed-loop
system. The load is kept at one ohm, and the input voltage,
which is the bifurcation parameter, is varied between 20 to 62 V
in increments of 0.1 V. The bifurcation diagram is constructed
using the exact method and numerical techniques. The exact
method works for less than 55 V. Beyond that the system
saturates and hence (15) is indeterminate. To carry on, we use
numerical methods. The bifurcation analysis clearly shows a

(37)

(38)

(39)
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Fig. 2. High-frequency model of the closed-loop buck converter.

Fig. 3. Experimental closed-loop buck converter.

fast-scale instability, which cannot be predicted with the state-
space averaged model. Moreover, prediction of the period-one
slow-scale instability with the linearized averaged model is con-
servative as compared to that obtained with the nonlinear aver-
aged model.

It follows from Fig. 5 that the period-one orbits are stable for
all values of the input voltagebelow 53.8 V. All of the Floquet
multipliers are within the unit circle. As increases past 53.8 V,
one of the Floquet multipliers exits the unit circle through,
as shown in Fig. 6, indicating a period-doubling or flip bifur-
cation. To study the stability of the created period-doubled or-
bits, we calculated the Floquet multipliers based on the second-
order map for V. The result is

. Because all of these
multipliers are inside the unit circle, the created period-two or-
bits are stable, and hence the period-doubling bifurcation is su-

Fig. 4. Frequency-response analysis of the closed-loop buck converter. It
shows a stable system.

percritical. Indeed, we were able to use long-time simulation to
calculate period-two orbits beyond V, as shown in the
bifurcation diagram in Fig. 5.

Fig. 7(a) shows that the duty ratio undergoes a period-dou-
bling bifurcation as increases beyond 53.8 V. Immediately
after the period-doubling bifurcation, all of the Floquet multi-
pliers of the second-order map are within the unit circle: three
of them are well within the unit circle and two are real and near

, as shown in Fig. 7(b). In Fig. 7(c), we show the move-
ment of the latter multipliers asincreases. They approach each
other, collide, and move away from the real axis. It follows from
Fig. 7(a) that as approaches V, one of the
duty ratios approaches zero and at the error signal
hits the ramp at the bottom, as shown in Fig. 7(d). As such, the
system saturates, which we have confirmed experimentally. This
saturation or pulse dropping initiates the chaos, which is called
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Fig. 5. Numerically obtained bifurcation diagram of the closed-loop buck converter. It shows a fast-scale instability.

border collision bifurcation by Nusse et al. [35] and Bannerjee
et al. [21], [36]. Researchers in other fields have also reported
similar nonsmooth bifurcations e.g., C-bifurcations in Filippov
systems [37], [38] and grazing bifurcation in impacting systems
[39]–[41]. In the saturated region, the second-order map used to
derive (27) and (28) becomes invalid. As such, we are unable
to plot the movement of the Floquet multipliers any more. For
further increase in the input voltage, the response of the system
becomes chaotic, which is shown in Fig. 5.

Once chaos is initiated, we resort to time-domain simulation
using the switching model. In [42] the concept of impact map
has been proposed. However, for the chaotic region, where the
switching instant is unknown, the difference in the computation
time between the simulation and the approach based on the im-
pact map is negligible. It follows from the bifurcation diagram
in Fig. 5 that initially chaos is confined to two small bands.
As is increased, the two chaotic bands increase in size until
they collide with the unstable period-one response, resulting in
a single large chaotic attractor in a so-called attractor-merging
crisis [28].

We now explain, qualitatively, the transition in the response of
the closed-loop converter from a period-two orbit to a chaotic at-
tractor in the vicinity of by using Filippov’s theory [10].
However, to proceed further, we use (11), (12) and Fig. 1, to de-
scribe the dynamics of the states of the closed-loop buck con-
verter as a differential equation with discontinuous right-hand
side; that is,

(41)

Fig. 6. One of the period-one Floquet multipliers exits the unit circle through
�1, indicating a period-doubling bifurcation.

where , and
. Equation (41) shows that when , then

is undefined. However, as long as at
the point of impact with the ramp, the latching action of our con-
troller ensures only a single turn-on and a single turn-off of the
power switch in a switching cycle. As such, one can describe the
dynamics of the system using a nonlinear discrete map, thereby
eliminating the discontinuity. One such map is used to obtain
(27) and (28). The general form of this map is
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Fig. 7. (a) Variation of the duty ratio and (b) the magnitudes of the Floquet multipliers with the input voltage in the period-two region. (c) Two of the Floquet
multipliers in (b) first collide with each other and then move toward the imaginary axis. (d) The error signal hits the ramp at the lowest point (at the beginning of
the switching cycle) and the closed-loop system saturates.

(42)

where and are matrices, and the last two scalar
equations describe the switching conditions. When
(or ) at the point of impact with the ramp, (e.g.,
Fig. 7(d)), the system saturates and hence (42) fails. Using
Fig. 7(d), we therefore construct another map as

(43)

where s, are matrices. The nonlinear map (43) is
valid at the point given by and in the vicinity of

the fixed point. It is obvious that in the vicinity of saturation,
the two maps (given by (42) and (43)) that describe the same
system have different forms. Let and be the Jacobian
matrices that are obtained by linearizing (42) and (43) in the
vicinity of the saturation point. Depending on the values of
and in the neighborhood of the saturation point, we can have
two different sets of Floquet multipliers ( and ). In
a smooth system, the transition from to is always
gradual. However, this is not the case in a nonsmooth system;
it has many other other bifurcations than a smooth system [28].
The bifurcation diagram in Fig. 5 shows one such case, where
chaos occurs due to saturation immediately after a period-dou-
bling bifurcation. Although the Floquet multipliers are defined
before and after the saturation point, they are not defined at this
point. The Floquet multipliers at this point are obtained from the
set-valued Jacobian matrix . The viable solutions
of this set are obtained by using the concept of convexity [10],
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Fig. 8. Experimental waveforms for (a) period-one and (b) chaotic responses.

as shown in Appendix IV (for a differential equation with dis-
continuous right-hand side).

In Fig. 8, we show the experimental results we obtained for
the converter in the stable and unstable regions with the input
voltage as the bifurcation parameter. In Fig. 8(a), we show a
stable period-one response. Asis increased to 52.6 V, the re-
sponse becomes chaotic, as shown in Fig. 8(b), without under-
going a period-doubling bifurcation as predicted by the theory.
To explain this discrepancy, we used the high-frequency model,
shown in Fig. 2, to account for the impact of the very high-
frequency dynamics due to parasitics and device nonlineari-

ties. The high-frequency model is developed using actual de-
vice models and parasitic parameters obtained using the actual
PCB layout. The parasitic parameters are obtained from the PCB
using the finite-analysis pacakage INCA. In Fig. 9, we present
the Fourier spectra of the bus voltage for two separate cases:
one based on the high-frequency model and the other based on
the nominal model, as shown in Fig. 1. These simulation results
clearly indicate that the unmodeled uncertainties due the very
high-frequency dynamics cause the earlier onset of chaos.

Interestingly, the chaotic response is stable, and the ripple in
the output voltage caused by chaos is tolerable, as seen from the
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Fig. 9. Impact of parasitics on the onset of chaos. Fourier spectra of the output
voltage based on the nominal model (bottom trace) and on the high-frequency
model (top trace). The latter predicts an earlier onset of chaos.

Fig. 10. Experimental result shows the influence of a transient-load change on
the chaotic attractor.

experimental waveforms. We also performed a dynamic-load
test when the converter is in the chaotic region, and the result is
shown in Fig. 10. The load resistance was changed by 150% pe-
riodically every 1 ms. The test results show that chaos is stable.
Within the chaotic region, we found narrow windows of pe-
riodic responses. Two such periodic waveforms are shown in
Figs. 11(a) and (b).

Next, we demonstrate the slow-scale instability in the buck
converter. The controller for the closed-loop systems has the
form . The frequency-re-
sponse function for this case is shown in Fig. 12(a) for input
voltages ranging from 20 to 62 V. The load resistance was
kept constant at 5 . For the nonlinear model, given the same
system parameters, we found that two of the Floquet multipliers

exit
the unit circle as complex conjugates at an input voltage of 31

V. Hence, both the averaged and discrete models predict the
slow-scale instability.

The experimental result in Fig. 12(d) show that the response
of the system suddenly bursts into an oscillation as the input
voltage was gradually reduced below the point of instability.
Beyond the point of instability, the current is not always in
the CCM as seen from the theoretical and experimental results
shown in Figs. 12(b) and (c). To analyze the dynamics beyond
this point of instability, we had to switch between the CCM and
DCM models. The CCM model was augmented with one more
additional topology in which both the switch and diode
are off. In other words, the system of (5) is modified as

(44)

where and
. The additional state-space matrices

, and required for the DCM model are listed in Ap-
pendix II. In (4) the duty ratio is calculated as before. The ad-
ditional timing information needed is the instant at which the
inductor goes to zero in the discharging mode.

Next, we present the results obtained for an integrated system,
which comprises the buck converter and a second-order filter at
its front end. A complete bifurcation analysis for this case can
be found in [23]. We consider two separate cases as before. The
first is a stable integrated system based on the stability criterion
of Middlebrook. The other is a poorly designed filter. The fre-
quency-response plots of and for both cases are shown
in Figs. 13(a) and (b). For the second case, in line with the re-
sult obtained for the standalone converter, we found that the
slow-scale instability can be predicted by both the averaged and
nonlinear models. Fig. 14(a) shows that when the input voltage
is gradually reduced, the slow-scale instability occurs due to a
Hopf bifurcation. Using the normal form of the large-signal av-
eraged model in the vicinity of the bifurcation point, we found
that the Hopf bifurcation is subcritical in nature. The averaged
model, however, fails to predict the fast-scale instability in the
first case, which is predicted by the nonlinear analysis and ob-
served experimentally as shown in Fig. 14(b).

VIII. SUMMARY AND CONCLUSION

Using an exact formulation based on nonlinear maps, we
investigate the fast-scale and slow-scale instabilities of a
closed-loop converter and predicted the boundaries of these
instabilities. For the standalone converter, the fast-scale in-
stability results in a supercritical period-doubling bifurcation
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Fig. 11. Experimental result shows (a) period-4 and (b) period-3 waveform within the chaotic region.

followed by an intermittency of type-I route to chaos. The
averaged model does not predict the boundary of the period-one
instability correctly. Moreover, it can not account for post-in-
stability dynamics.

We find similar results for an integrated system consisting of a
second-order filter and a converter. We investigate two such inte-
grated systems: one is stable as per Middlebrook’s criterion [31]
and the other is unstable. We find that this criterion fails to pre-
dict the fast-scale instability for the first design. For the second
design, which is unstable on the slow scale, this criterion (which
is based on linear analysis) does not give the domain of attrac-

tion of the period-one orbits near the bifurcation point. Using a
nonlinear analysis [23], we find that the domain of attraction of
the period-one orbits reduces considerably even before the Hopf
bifurcation point due to the simultaneous presence of two stable
and one unstable solutions. This reduces the disturbance rejec-
tion capability of the closed-loop system in this region. Con-
ventional methods based on small-signal averaged-model tech-
niques do not show this reduction in the domain of attraction.

The impact of parasitics on the onset of chaos is studied using
a high-frequency model. The model is developed based on an
actual PCB layout and power-device models. We find that the
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Fig. 12. Slow-scale instability of the closed-loop buck converter. (a) and (b) Linear and nonlinear analyses, which show an unstable response. (c) Anexperimental
result that verifies the result in (b). (d) An experimental result that shows the onset of a sudden slow-scale instability as the input voltage (bifurcation parameter)
is changed.

onset of chaos on the fast scale occurs earlier due to parasitics.
However, it has negligible impact on the slow-scale instability.
This is confirmed experimentally. The boundedness of the re-
sponse in the chaotic region under transient-load conditions is
confirmed experimentally.

The closed-loop converter system should be designed to op-
erate away from the slow-scale instability boundary. However,

it can operate close to its fast-scale instability boundary. This
will give the system a much higher bandwidth than that obtained
using conventional designs. Thus by analyzing the nonlinear dy-
namics beyond the period-one region, one can improve the per-
formance of the converter and correctly predict the boundaries
of the instabilities. To extend the period-one operating regime,
one can use bifurcation control.
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Fig. 13. Results of an integrated filter-converter system based on small-signal
analysis. The frequency-response analyses based on Middlebrook’s criterion
predicts (a) stable and (b) unstable system.

Fig. 14. (a) Nonlinear analysis shows a slow-scale instability for the second
filter-converter system. (b) Experimental result that shows a fast-scale instability
for the first filter-converter system.

APPENDIX I
STATE-SPACE MATRICES FOR THEOPEN-LOOP

BUCK CONVERTER

(for DCM only)

APPENDIX II
STATE-SPACE MATRICES FOR THECLOSED-LOOP

BUCK CONVERTER

(for DCM only)

where is the feedback sensor gain.

APPENDIX III
PARAMETERS OF THECLOSED-LOOPSYSTEM

Nominal model parameters

H m m

F –

High-frequency model parameters

m m H

F F pF

nH m nH

m nF nF

m nH

Filter parameters

H m m

F
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APPENDIX IV
FILIPPOV’S SOLUTION FOR A DISCONTINUOUSDIFFERENTIAL

EQUATION

Let us consider the following vector differential equation:

(A1)

where is measurable and essentially locally
bounded. A vector function , defined on the interval ,
is a Filippov solution [10] of (A1) if it is absolutely continuous
and, for almost all and for arbitrary , the
vector belongs to the smallest convex closed set of an

-dimensional space containing all of the values of the vector
function ; where ranges over the entire neighbor-
hood of the point in the space (with fixed) except for a
set of measure ; that is

(A2)

where is called the Filippov’s differential inclusion and
is defined as

(A3)

In differential inclusion (A2), denotes the convex hull of a
set, represents a set of zero Lebesgue measure,and
is a ball of radius centered at . The content of Filippov’s
solution is that the tangent vector to a solution at a time, where
it exists, must lie in the convex closure of the limiting values of
the vector field in progressively smaller neighborhoods around
the solution evaluated at time.

Let us now consider a single switching surface, which is
a smooth surface (manifold) separating the space into regions

and . Suppose that is regular so that it can be divided
by a smooth real-valued function (i.e.,

and suppose that is bounded and, for any fixed
, its limiting values and exist when is ap-

proached from and . Let and be the
projections of and on the normal to the
surface directed toward and . Then, for an absolutely
continuous satisfying , and

, the trajectories pointing toward are
solutions of (A1) according to the differential inclusion (A2) if
and only if

(A4)

where

(A5)

We note that the right-hand side of (A4) is orthogonal to
and hence the solution remains on the surface.
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