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Abstract—We develop and demonstrate a technique based on
composite Lyapunov functions (CLFs) to analyze the impacts of
passive (RL and RC) and nonlinear (diode rectifier) loads on the
reaching dynamics of a three-phase voltage-source inverter (VSI).
The reaching criterion (which ensures convergences of state tra-
jectories to an orbit) is synthesized using piecewise linear models
of the VSI and the loads and conditions for switching among the
various models (corresponding to the different switching states).
Once orbital existence is ensured using the reaching criterion, we
extend the CLF-based approach to predict the stability of the
nominal (period-1) orbit of the system (comprising the three-phase
VSI and the load) and compare these predictions with those
obtained using a conventional impedance-criterion technique that
is developed based on a linearized averaged model. Overall, we
demonstrate the significance of analyzing the reaching condition
from the standpoint of orbital existence and why such a criterion
is necessary for analyzing global stability. On a broader note,
the methodology outlined in this paper is useful for analyzing
the global stability of multiphase inverters, potentially leading
to advanced control design of VSI for applications including un-
interrupted power supplies, telecommunication power supplies,
grid-connected inverters, motor drives, and active filters.

Index Terms—Converter–load interactions, impedance crite-
rion, linear matrix inequality (LMI), Lyapunov’s stability, piece-
wise linear (PWL) systems, reaching conditions, three-phase
inverters.

I. INTRODUCTION

INTERACTIONS among power converters, input/output fil-
ters, and their loads have been investigated in great detail

over the years for dc/dc converters [1]–[6] and, recently, for
multivariable systems including three-phase inverters and recti-
fiers in the synchronous reference frame [7]. These techniques
predict the regions of stable operation with varying loads and
input conditions and are used to determine control strategies
and controller bandwidths/gains to ensure operation within
stability bounds. However, these techniques are based on the
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linear systems theory, and their predictions may be inadequate
for certain operating conditions of switching power converters,
as demonstrated, for instance, in [8] for dc/dc converters. More-
over, these techniques cannot account for cases where nonlinear
loads (e.g., diode rectifier loads) are connected to the converter.
To address the issues of load nonlinearities, a technique is
developed in [9] where the nonlinear load is decomposed into
several linear (harmonic) loads and the impedance criterion is
extended for each of the decomposed harmonics.

Although the techniques in [8] and [9] can handle non-
linearities due to switching and nonlinear loads, respectively,
they (as well as the methodologies outlined in [1]–[7]) assume
orbital existence. Therefore, these techniques cannot be used
to predict the global stability of converters. For global stability
predictions, the reaching criterion for orbital existence has to
be established first. Traditionally, the reaching dynamics of the
system are investigated using time-domain simulations of the
system model [10]–[12]. Over the years, significant research
effort has been devoted to developing techniques for faster
simulations; for instance, by using s-domain techniques to solve
the differential equation that governs the system dynamics in
each switching state [13] or by tracking the envelope of the state
trajectories during large-signal perturbations [14]. However,
these simulation-based approaches sacrifice the accuracy of the
system models (as in [14]) either by ignoring the switching
discontinuities or because of the limitations of the simulation
algorithm (sampling time and truncation errors as in [13]). Fur-
thermore, depending on how long the model has to be simulated
and due to the possibility of a large number of initial conditions,
simulation-based techniques for large-signal stability analyses
can have a significant computational overhead, particularly as
the dimension and number of switching states of the model
increase.

Therefore, there exists a need to develop analytical tech-
niques to analyze the large-signal stability of power converters.
Some such analytical approaches have been developed in [15]–
[18]. However, all of these techniques are either computa-
tionally cumbersome [15] for large-dimension systems or are
limited to certain specific convergence mechanisms [16]–[18].
The limitations of some of the existing analytical techniques
for reaching condition analyses have been summarized in detail
in [19], where the authors describe a technique based on com-
posite Lyapunov functions (CLFs) to determine the reaching
condition for orbital existence of switching power converters.
In conjunction with existing linear and nonlinear techniques
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Fig. 1. Schematic of the overall VSI-load system, comprising the power stage and feedback controller connected to two passive load types and a three-phase
diode rectifier load. The conventional symmetrical space-vector modulation scheme is used [24]. For the passive loads, the parasitic resistances of the inductor
LRL and the capacitor CRC are assumed to be lumped with the series resistors (RRL and CRC , respectively).

for steady-state stability, the reaching criterion in [19] can be
applied to analytically determine the global stability of certain
classes of switching power converters [20].

In this paper, we investigate the impacts of different load
types (constant and pulsating passive RL and RC loads, and a
nonlinear diode rectifier load) on the reaching conditions of
a three-phase voltage-source inverter (VSI) by modifying the
techniques developed in [19]. Section II describes the piecewise
linear (PWL) models of the three-phase VSI with different load
types. In Section III, we develop the reaching criterion for the
VSI-load system using a CLF-based approach. In Section IV,
we describe how this technique can be extended to predict the
stability of the nominal (period-1) orbit of the VSI-load system.
Finally, in Section V, we present the results of the analyses
and determine the reachability bounds of the VSI-load system.
Furthermore, we demonstrate how the lack of knowledge of
reachability can yield inaccurate global stability results. From
the point of view of multiphase inverter design, global-stability
predictions using the CLF-based methodology is a powerful
tool for robust stability analysis and control design for a wide
range of applications including uninterrupted power supplies,
telecommunication power supplies, grid-connected inverters,
motor drives, and active filters [21]–[23].

II. PWL MODELS OF VSI WITH PASSIVE

AND DIODE RECTIFIER LOADS

In this section, we derive PWL state-space models of the
three-phase VSI and the different loads and define the con-
ditions that govern switching among these PWL models. The
reaching criterion developed in Section III and the CLF-based
orbital stability analyses technique in Section IV are derived

using these models. Note that, in this paper, we ignore the
notation of time, i.e., we represent any state y(t) as y.

A. Power-Stage Model

Fig. 1 illustrates the schematic of a three-phase VSI with
two types of loads: 1) linear passive loads (RC and RL) and
2) a nonlinear load (three-phase diode rectifier). The voltage at
points a1, b1, and c1 of the VSI are given by

va1 =
2
3
(2Sa1 − Sb1 − Sc1)Vin (1a)

vb1 =
2
3
(−Sa1 + 2Sb1 − Sc1)Vin (1b)

vc1 =
2
3
(−Sa1 − Sb1 + 2Sc1)Vin (1c)

where Sa1, Sb1, and Sc1 are the switching functions of the
power devices of the three-phase VSI and are determined based
on the outputs of the feedback controller, and Sa1 + Sa1 = 1,
Sb1 + Sb1 = 1, and Sc1 + Sc1 = 1 (neglecting dead times be-
tween the turn-on and turn-off conditions of the power devices
in the same leg). The dynamics of the power stage of the three-
phase VSI (shown in Fig. 1) can be described by the following
vector differential equations:

diabc
1

dt
=K1i

abc
1 + K2i

abc
2 + K3v

abc
1 + K4v

abc
2 +K5Vin (2a)

dvabc
1

dt
=K6i

abc
1 + K7i

abc
2 + K8v

abc
1 + K9v

abc
2 +K10Vin (2b)

where any vector yabc
r can be represented as yabc

r =
[ ya_r yb_r yc_r ]T . Matrices K1–K10 are described in the
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Appendix. We note that, in (2a), matrix K5 contains switching
functions Sa1, Sb1, and Sc1. The following differential equa-
tions describe the dynamics of three commonly used loads:

Inductive Load :
diabc

2

dt
= L1i

abc
1 + L2v

abc
1 + L3i

abc
2

(3a)

Capacitive Load :
dvabc

2

dt
= L4i

abc
1 + L5v

abc
1 + L6v

abc
2

(3b)

Diode rectifier Load :
diabc

2

dt
= L7v

abc
1 + L8i

abc
2 + L9vD

dvD

dt
= L10iabc_2 + L11vD (3c)

where vD ∈ �1×1 is the voltage across the output capacitor
of the diode rectifier, and matrices L1–L11 are defined in the
Appendix. For the diode rectifier load, the terms L9 and L11

contain the switching functions of the diodes Sa2, Sb2, and Sc2,
due to which the model in (3c) is nonlinear. However, unlike the
switching states of the VSI, which are determined based on
the outputs of the feedback controller, the switching states of
the diode rectifier depend on the states of the VSI and load
power stages (vabc

1 , iabc
2 , and vD) and are described in the

Appendix. We note that, for the models of the VSI in (2a) and
(2b), as well as for the diode rectifier model in (3c), we assume
that the switches are ideal (i.e., they have no ON-state drops
and have negligible rise and fall times, as well as no reverse
recovery effects in case of the diodes). Combining (2a) and (2b)
with (3a)–(3c), the state-space equations of the overall power
stage can be expressed as

dxabc
p

dt
= Aabc

p_jx
abc
p + Babc

p_j (4)

where xabc
p = [ (iabc

1 )T (vabc
1 )T (iabc

2 )T (vabc
2 )T vD ]T .

The value of subscript j depends on the switching functions
of the VSI. Using Park’s transformation [24], we convert the
system of equations in the stationary reference frame (4) to
the synchronous reference frame. The resulting state-space
equation can be expressed as

dxdq
p

dt
= Adq

p_ix
dq
p + Bdq

p_i (5)

where i represents the switching states of the synchronous
reference frame model of the VSI-load system, xdq

p = T × xabc
p

represent the states of the power stage in the synchronous
reference frame, and T is the Park’s transformation matrix.
Matrices Adq

p_i and Bdq
p_i are defined in the Appendix.

B. Power-Stage Model for Periodically Pulsating Loads

The state-space equation (5) describes the dynamics of the
VSI when the load does not change dynamically. For time-
varying loads (for instance, a periodically pulsating load, as
illustrated in Fig. 2), the state-space (5) has to be modified.

Fig. 2. Schematic illustrating a pulsating load d and its representation as a
sum of harmonic components. For the latter, we ignore harmonic components
n > 11. As illustrated, d1 and d2 are the two load levels, ∆d is the magnitude
of the load pulse perturbation (∆d = d2 − d1), Tp and Dp are the time period
and duty ratio of the pulse, respectively.

The dynamics of the periodically-pulsating load (d) can be
represented by a Fourier series as

d =
1
2
a0 +

∞∑
n=1

{an cos ωnt + bn sin ωnt} (6)

where the Fourier coefficients are given by an =
(1/Tp)

∫ Tp

0 d cos(ωnt)dt and bn = (1/Tp)
∫ Tp

0 d sin(ωnt)dt,
and ωn = (2nπ/Tp) represents the frequency of the nth
harmonic component. The dimension of an and bn is the same
as that of xdq

p . For the pulsating load in Fig. 2, the expressions
for the Fourier coefficients are given as follows [25]:

a0 = 〈d〉

an =
sin(2nπDp)

nπ
(d2 − d1)

bn =
1

nπ
(d2 − d1) {1 − cos(2nπDp)}

where 〈d〉 is the average value of the load, Dp is the duty ratio of
the load pulse, and d1 and d2 are the two levels of the pulsating
load. Using the expression for d in (6), the state-space equations
of the VSI with periodic loads can be expressed as

dxdq
p

dt
= Adq

p_ix
dq
p + Bdq

p_i

+

(
1
2
a0 +

∞∑
n=1

an cos ωnt + bn sin ωnt

)
. (7)

Next, for each frequency component in (7), we define an
additional state yn1 = an cos ωnt + bn sin ωnt. The dynamics
of the states of the nth harmonic component can be described
as [26]

yn1 = an cos ωnt + bn sin ωnt

dyn1

dt
= − anωn sin ωnt + bnωn cos ωnt = yn2

dyn2

dt
= − anω2

n cos ωnt − bnω2
n sin ωnt = −ω2

nyn1. (8)
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Using (8), the state-space (7) can be modified as

dxdq
p

dt
= Adq

p_ix
dq
p + Bdq

p_i +

(
1
2
a0 +

∞∑
n=1

yn1

)
(9)

with the introduction of additional state-space equations to
describe the dynamics of each harmonic component. Using (8)
and (9), the augmented state-space equation of the overall VSI-
load system can be expressed as

dx̂dq
p

dt
= Âdq

p_ix̂
dq
p + B̂dq

p_i (10)

where

x̂dq
p = [ xdq

p y11 y12 · · · y∞1 y∞2 ]T

B̂dq
p_i =

[ (
Bdq

p_i + a0
2

)
0 0 · · · 0 0

]T

Âdq
p_i =




Adq
p_i 1 0 · · · 1 0
0 0 1 · · · 0 0
0 −ω2

1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · −ω2

∞ 0




.

The dimensions of the matrices and vectors in (10) are infinite.
However, for practical purposes, we use only the dominant
harmonic components for our analyses to reduce computational
overhead.

C. Controller Model

The closed-loop controller for the VSI-load system is im-
plemented in the synchronous reference frame, as illustrated in
Fig. 1. The d-axis controller consists of a voltage loop, which
generates the reference for the current loop. The reference for
the q-axis current loop is internally generated, depending on
the type of load that is connected to the VSI. For all the control
loops, conventional linear compensators are used. The outputs
of the d-axis and q-axis current loops are modulated using a
symmetrical space-vector modulation scheme [24]. Note that
the analysis techniques described in this paper can be applied to
other modulation schemes as well. As illustrated in Fig. 1, the
compensators in the d-axis and q-axis control loops introduce
additional states. The state-space equation of the controller is
given by

dxc

dt
= Acxc + Hpx

dq
p + Bc (11)

where xc = [ ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ]T are the sta-
tes of the controller, as shown in Fig. 1; Bc =
[ vdref 0 iqref 0 0 0 ]T ; Hp is the matrix of the

sensor gains (given in the Appendix for the different load
types); and

Ac =




−ωpdv 0 0 0 0 0
1 0 0 0 0 0

Kdv Kdvωzdv −ωpdi 0 0 0
0 0 1 0 0 0
0 0 0 0 −ωpqi 0
0 0 0 0 1 0


 .

D. Overall Closed-Loop System Model

Combining (5) and (11) for the three loads described in
Section II-A and combining (10) and (11) for the periodically
pulsating load described in Section II-B, the overall state-space
equation of the system is described as

dx

dt
= Aix + Bi (12)

where x =
[

xdq
p

xc

]
, Ai =

[
Adq

p_i 0r×s

Hp Ac

]
, and Bi =

[
Bdq

p_i

Bc

]

for the loads described in Section II-A, and x =
[

x̂dq
p

xc

]
, Ai =[

Âdq
p_i 0r×s

Hp Ac

]
, and Bi =

[
B̂dq

p_i

Bc

]
for the pulsating load de-

scribed in Section II-B. Here, all of the elements of matrix 0r×s

are zeros.
For the VSI, the switching conditions of the power devices in

the synchronous reference frame depend on the outputs of the
feedback controller states and are given by

Sd1 =
{

0, (Kdiξ3 + Kdiωzdiξ4) − V mod 1 ≤ 0
1, (Kdiξ3 + Kdiωzdiξ4) − V mod 1 > 0

Sq1 =
{

0, (Kqiξ5 + Kqiωzqiξ6) − V mod 1 ≤ 0
1, (Kqiξ5 + Kqiωzqiξ6) − V mod 1 > 0.

(13)

The diode rectifier load introduces additional switching
states in the state-space equations of the overall system, apart
from those of the original VSI. These switching states are due
to the uncontrolled switching of the diodes and depend on the
voltage across the diode. The switching states of the diode
rectifier load can be expressed as (14), shown at the bottom of
the next page. Variables a35 − a47 are given in the Appendix.

III. SYNTHESIS OF REACHING CRITERION

As illustrated in Fig. 3, the dynamics of the three-phase VSI
consists of 1) the reaching phase, which describes the dynamics
of the state trajectories from a given initial condition to the
orbit, and 2) the steady-state phase, where the error trajectories
of the system correspond to a periodic orbit.

To derive the reaching criterion of the VSI-load system, we
first translate the state-space equation of the overall system
given by (12) to the error coordinates using e = x∗ − x, where
e represents the error vector and x∗ represents the steady-state
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Fig. 3. Schematic illustrating the dynamics of a three-phase VSI (or any switching power converter, in general) in the reaching and steady-state (corresponding
to a periodic orbit) phases of operation. Symbol esw1 = 0 describes a switching surface, whereas e1 represents the dynamics of one of the states of the VSI in
error coordinates.

values (corresponding to infinite switching frequency) of the
states. The modified state-space equation is given by

de

dt
= Aie + Bi (15)

where Bi = −(Bi + Aix
∗).

The reaching criterion of the VSI-load system depends on the
number of nonrepetitive and nonredundant switching sequences
generated by the noncomplementary switching functions of
the VSI (Sd1 and Sq1) and the diode rectifier load (Sd2 and
Sq2). The possible switching states of the VSI-load system for
the passive and diode rectifier loads are listed in Table I. For
the case of the passive load, N = 4, whereas, for the diode
rectifier load, N = 16. The total number of nonrepetitive and
nonredundant switching sequences is given by [19], [20]

M =
2N∑
l=1

(
2N

Cl

)
=

2N∑
l=1

(
(2N )!

l!(2N − l)

)
(16)

where N is the total number of switching states of the overall
system.

To determine the reaching criterion of the VSI-load system,
we define a CLF Vk(e) > 0 (for the kth switching sequence,
k = 1, 2, . . . ,M ), which is a weighted sum of the Lyapunov
functions (eT Pkie) in each switching state of a given sequence
k and is given by [27]

Vk(e) =
h∑

i=1

αkie
T Pkie, k = 1, 2, . . . ,M (17)

where h is the number of switching states in a given switching
sequence k, αki are the weights of the Lyapunov functions in
each switching state such that 0 ≤ αki ≤ 1 and

∑h
i=1 αki = 1,

TABLE I
SWITCHING STATES OF THE VSI-LOAD SYSTEM

and Pki = PT
ki is a positive-definite matrix. Now, taking the

derivative of Vk(e) in (17) and using (15), we obtain the
following:

dVk(e)
dt

=
h∑

i=1

αki

(
deT

dt
Pkie + eT Pki

de

dt

)

=
h∑

i=1

αki

([
e
1

]T[AT
i Pki + PkiAi PkiBi

B
T
i Pki 0

][
e
1

])
.

(18)

Sd2 =
{

0, {(1 + a35L2)vd1 − (rL2 + a31L2)id1 + (L2a37 − 1)vD − L2(a32iq1 + a33id2 + a34iq2 + a36vq1)} ≤ 0
1, {(1 + a35L2)vd1 − (rL2 + a31L2)id1 + (L2a37 − 1)vD − L2(a32iq1 + a33id2 + a34iq2 + a36vq1)} > 0

Sq2 =
{

0, {(1 + a46L2)vq1 − (rL2 + a42L2)iq1 + (L2a47 − 1)vD − L2(a41id1 + a43id2 + a44iq2 + a45vd1)} ≤ 0
1, {(1 + a46L2)vq1 − (rL2 + a42L2)iq1 + (L2a47 − 1)vD − L2(a41id1 + a43id2 + a44iq2 + a45vd1)} > 0 (14)
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As per Lyapunov’s method, the error trajectories of the system
converge toward the orbit for finite switching frequency (or the
equilibrium point for infinite switching frequency), provided
that (dVk(e)/dt) < 0. This condition is satisfied by (18), pro-
vided that the following matrix inequality is satisfied:

h∑
i=1

αki

[
AT

i Pki + PkiAi PkiBi

B
T
i Pki 0

]
< 0. (19)

If there are no solutions of Pki for (19), we investigate the dual
of Vk(e) to confirm that the error trajectories of the VSI do not
converge to the orbit [28], [29]. We define the dual of Vk(e) as

VDk(e) =
h∑

i=1

λkie
T Qkie, k = 1, 2, . . . ,M (20)

where 0 ≤ λki ≤ 1,
∑h

i=1 λki = 1, and Qki = QT
ki is a

positive-definite matrix. For the kth switching sequence, the
error trajectories of the VSI do not converge to the orbit,
provided that VDk(e) satisfies the following criteria:

VDk(e) > 0 and
dVDk(e)

dt
> 0 (21a)

or

−VDk(e) =
h∑

i=1

λkie
T (−Qki)e < 0 and − dVDk(e)

dt
< 0.

(21b)

Following (18) and (19), (21b) is satisfied, provided that

h∑
i=1

λki

[−AT
i Qki − QkiAi −QkiBi

−B
T
i Qki 0

]
< 0. (22)

If there are no solutions of Pki for (19) but there exist solutions
of Qki for (22), we conclude that the system does not satisfy
the reaching criterion for orbital existence.

IV. STEADY-STATE STABILITY CRITERIA

The reaching criterion (19) derived in Section III predicts
orbital existence. Once this criterion is satisfied, the next goal
is to analyze the stability of the nominal (period-1) orbit of
the VSI-load system. Because the dynamics of this system
is fundamentally governed by a line-frequency (slow) and a
switching-frequency (fast) [8] component, the frequency of the
nominal (period-1) orbit is determined by the least common
multiple of the two frequency components [30], [31].

Stability of the nominal orbit can be investigated using the
CLF-based approach (which is explained here) by investigating
the change of (17) over one nominal time period. The nominal
orbit is stable, provided that dVk(e)/dt = 0. Such an approach
can account for both the fast-scale and slow-scale dynamics
of the system [8]. Because the two frequency components in
our case (and as shown in Table II) are several orders apart,
for practical purposes, we assume that the frequency of the

TABLE II
PARAMETERS OF THE THREE-PHASE VSI USED FOR SIMULATIONS

nominal orbit is the same as the slow-frequency component
and subsequently investigate the change in CLF (17) over
this period. By equating the left-hand side of (19) to zero,
the condition for the stability of the nominal orbit can be
expressed as

h∑
i=1

αki

[
AT

i Pki + PkiAi PkiBi

B
T
i Pki 0

]
= 0 (23)

where Pki are positive-definite matrices, and αki (0 ≤ αki ≤ 1
and

∑h
i=1 αki = 1) depends on the time spent in each switching

state and can be obtained using the numerical search algorithm.
The switching states of the overall system are given in Table I.
If there are no positive-definite matrices Pki that satisfy (23),
we conclude that the nominal orbit is unstable. We note that,
unlike the conventional map-based approach [8], [32], [33],
which ascertain the stability of (15) using a map that is derived
by sequential patching of solutions corresponding to the ith
switching state and hence requires knowledge of the modu-
lation scheme, the CLF-based approach depends only on the
switching states of the nominal sequence. Even if the nominal
sequence changes (e.g., due to a change in the modulation
scheme), (23) is true as long as the switching states in the
sequence are the same.

In contrast to the CLF-based method, the conventional tech-
nique to analyze the orbital (or steady-state) stability of (15)
is based on the impedance criterion [1] that is derived using
a linearized averaged model of the system. According to this
criterion, the stability of the VSI-load system is guaranteed,
if the input impedance of the load Zi_load and the closed-
loop output impedance of the VSI Zo_inv satisfy the following
inequality:

|Zi_load| > |Zo_inv|. (24)

If (24) is violated, then, for certain cases, an extended analysis
of the loop gain using the Nyquist criterion needs to be carried
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Fig. 4. (a) Plot showing the variation of the minimum eigenvalues of the augmented P and Q matrices [obtained by solving LMIs (19) and (22), respectively]
with the load phase angle. The plot shows the reachable and unreachable regions of operation for the inductive and capacitive loads as well as the conditions for
the sliding mode and asymptotic mode of convergence. The points marked (i)–(iv) will be used later to compare the predictions of the reaching criteria with the
steady-state stability results. Simulation results illustrating the (b2) reachable and (b1) unreachable dynamics of the three-phase VSI for four operating conditions.

out to determine that the system is unstable [4], [5]. Note that
this criterion is based on the averaged model and hence can-
not account for the effect of fast-scale (switching-frequency)
dynamics on the stability of the overall system.

V. RESULT

In this section, we investigate the global stability of the three-
phase VSI with passive (constant and pulsating) and nonlinear
loads using the reaching criterion discussed in Section III
and the steady-state stability analysis techniques discussed in

Section IV using the CLF-based criterion and the small-signal
impedance criterion.

Matrices P1 · · ·Ph are obtained by solving linear matrix in-
equality (LMI) (19) (for the reachable case) and matrix equality
(23) (when the nominal orbit is stable). Similarly, matrices
Q1 · · ·Qh are obtained by solving LMI (22) for the unreachable
case. Because the minimum eigenvalue of a positive-definite
matrix is positive, we plot the variations of the minimum

eigenvalues of the augmented P


=


P1 0 0

0
. . . 0

0 0 Ph





 and
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Fig. 5. (a) Plot showing the variation of the minimum eigenvalue of the augmented P matrix [obtained by solving matrix equality (23)] of a three-phase
VSI with load phase angle for operating conditions where period-1 stability is satisfied. Variations of the small-signal output impedance of the VSI illustrating
(b2) stable and (b1) unstable characteristics for inductive and capacitive loads, respectively, for the operating conditions identified in the figure.
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Fig. 6. (a) Variation of the small-signal output impedance of the VSI and the input impedance of the inductive load for a phase angle of φ = 35◦. (b) Simulation
results illustrating the d-axis voltage-error of a three-phase VSI with time.

Q


=


 Q1 0 0

0
. . . 0

0 0 Qh





 matrices to see if the matrices ob-

tained by solving LMIs (19) and (22), and matrix equality (23)
are positive definite. The predictions of the reaching criterion
and the steady-state stability criteria are verified by time-
domain simulations in Simulink1. The nominal values of the
power stage and controller parameters are given in Table II.

A. Passive Loads

First, we investigate the impacts of the load phase angle
on the reaching conditions of the three-phase VSI with a
passive load. The variations of the minimum eigenvalues of the
augmented P and Q matrices [obtained by solving LMIs (19)
and (22), respectively] with the load phase angle are illustrated
in Fig. 4(a). Distinction between the sliding and asymptotic
modes of convergences can be obtained by using the criteria in
[19] and [20]. Because sliding-mode convergence is typically
faster than asymptotic convergence, this distinction can be used
to design controllers with superior dynamic performance. The
simulation results in Fig. 4(b1) and (b2) show the evolution
of the d-axis voltage-error trajectories for the unreachable and
reachable cases, respectively, for the RC and RL loads. In
the simulation results, the marker (x) indicates the desired
equilibrium (corresponding to zero error at infinite frequency),
whereas the arrows indicate how the state-error trajectories
evolve with time. For these simulations, any arbitrary initial
condition is chosen. These results validate the predictions of
the reaching criterion, as illustrated in Fig. 4(a).

The result in Fig. 4(a) only describes the reaching conditions
for orbital existence of the VSI-load system. To comment on the
global stability, we need to further analyze the stability of
the nominal (period-1) orbit. Fig. 5(a) shows the variation of
the minimum eigenvalues obtained by solving matrix equality
(23). To obtain these results, we examine the energy balance

1The simulation models of the three-phase inverter have been verified
by experimental results, which have been presented in our previous papers
[19], [20].

of the system over one line cycle. However, because, in this
case, the switching frequency is not an integer multiple of
the line frequency, there is a small discrepancy in the energy
balance over one line cycle. To avoid the large computational
overhead associated with computing the energy balance over a
long period of time, we consider that the nominal orbit of the
system is stable if the change in Vk(e) over one line cycle is
bounded by a small value ε [35]. For the cases considered in
this paper, these results agree with the results of the small-signal
impedance criterion, given by (24), as illustrated in Fig. 5(b1)
and (b2), for the inductive and capacitive loads.

Comparison of the predictions of orbital stability (Fig. 5)
with those of the reaching criterion [Fig. 4(a)] indicates a
discrepancy. For the inductive load, there are three parameter-
dependent regions, i.e., the reachable and stable (φ < 30◦),
unreachable but stable (φ = 35◦), and unreachable and unstable
(φ > 35◦) regions. For the operating condition corresponding
to φ = 35◦ [marked (iii) in Figs. 4(a) and 5(a)], the steady-
state analysis techniques predict that the system is stable, as
illustrated in Figs. 5(a) and 6(a). However, the reaching crite-
rion is not satisfied for this case. Using time-domain simula-
tions, Fig. 6(b) illustrates that the error trajectories reach the
orbit, provided that the initial condition lies within its vicinity.
However, for any other arbitrary initial condition, which is
not near the orbit, the error trajectories do not converge, as
illustrated in Fig. 4(b1) for the corresponding case. These
results demonstrate the need for reaching condition analyses, in
addition to the steady-state orbital stability to predict the global
stability of the VSI-load system.

Next, we investigate the impacts of load variations on the
reaching conditions of the overall system for two different
values of the d-axis voltage-loop compensator gain Kdv . Fig. 7
illustrates that the region of reachable operation shrinks with
decrease in the load power. In addition, the region of reachable
operation further reduces as Kdv is increased. By investigating
the effects of other controller parameters on the reaching con-
ditions, one can determine appropriate controller parameters
for the VSI-load system for different applications. Finally, we
investigate whether the rate of change of the load has any
impact on the reaching conditions of the system. Here, we note



1804 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 2008

Fig. 7. Variation of the reaching conditions of the VSI-load system with changes in the load power and the d-axis voltage-loop compensator gain for (a) RL and
(b) RC loads.

Fig. 8. Simulation results illustrating the dynamics of the three-phase VSI for a 50%–100% (of the full load) load transient for two different slew rates: (a) 12 000
and (b) 240 A/s.

that both load levels satisfy the reaching criterion for orbital
existence. Fig. 8 illustrates two cases: The rates of change of the
load are 1) 12 000 A/s and 2) 240 A/s. For both cases, the initial
and final load conditions satisfy LMI (19), i.e., the dynamics are
reachable. From Fig. 8, we observe that the reaching condition
does not change with step variation of the rate of change of
load. This result is true as long as the rate of change of the load
is sufficiently slower than the switching frequency of the VSI-
load system.

B. Pulsating Load

In the previous section, we investigated the impacts of load
variations on the reaching conditions of a VSI with passive
loads. In this section, we investigate the impacts of a pulsating
RL load2 (as shown in Fig. 2) on the reaching conditions of
such a system. The pulsating load is represented by a sum of
harmonic components, as described in Section II-B. For the
case considered in this paper, we observe that the pulsating
load is adequately described by harmonic components from
n = 1 to n = 11. Therefore, to avoid a higher computation

2We note that similar analyses can be performed for pulsating RC and diode
rectifier loads as well.

Fig. 9. Variation of the maximum allowable duty ratio (corresponding to the
reachable-region boundary) with variations of the load perturbation magnitude
and frequency. The duty ratio of the pulsating load is defined as the ratio of the
time spent at load level d1 with respect to load level d2.

overhead, we ignore the higher order harmonic components.
Fig. 9 illustrates the variation of the maximum allowable duty
ratio, which corresponds to the reachable-region boundary, with
variations of the magnitude and frequency of the pulsating load.
The region below this surface corresponds to the reachable
region. From the figure, we observe that the reachable region
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Fig. 10. (a) Variations of the maximum allowable duty ratio with perturbation
magnitude for fp = 10 Hz and fp = 1000 Hz. (b) and (c) Simulation results
illustrating the dynamics of the three-phase VSI with a pulsating load for
(b) duty ratio = 5% and (c) duty ratio = 50%. For the simulation results in
(b) and (c), ∆d = 12 A, and fp = 10 Hz.

can vary with the magnitude and frequency of the load pulse. In
other words, the reachable region significantly depends on the
amount of time spent at each load level of the pulsating load.

Fig. 10(a) illustrates the variation of the reachable-region
boundary with the magnitude of the pulsating load for two
operating frequencies (fp = 10 Hz and fp = 1000 Hz). Here,
one of the load levels d1 satisfies the reaching conditions (from
the results in Section V-A), whereas the other load level d2 does

Fig. 11. (a) Variations of the maximum allowable duty ratio with perturba-
tion frequency for pulsating load magnitudes of ∆d = 10 A, ∆d = 8 A, and
∆d = 6 A. (b) and (c) Simulation results illustrating the dynamics of the three-
phase VSI with a pulsating load for (b) fp = 10 Hz and (c) fp = 1000 Hz. For
the simulation results in (b) and (c), ∆d = 10 A, and Dp = 50%.

not satisfy the reaching condition. We observe that, for low duty
ratios, the system satisfies the reaching condition for orbital
existence. In other words, if the time spent at load level d2

is small, the state-error trajectories reach the orbit from an
arbitrary initial condition. The simulation results in Fig. 10(b)
and (c) validate these predictions.

Fig. 10 also indicates that the reachable region can vary
with the frequency of the load pulse. We plot the variation of
the reachable region with the load pulse frequency in Fig. 11.
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Fig. 12. Variations of the maximum allowable duty ratio with perturbation
magnitude for Kdv = 50, Kdv = 25, and Kdv = 10.

From Fig. 11, we observe that, for high magnitudes of the
pulsating load amplitude, the region of reachable operation
significantly reduces for low pulsating load frequencies. For the
case considered in this paper, the region of reachable operation
does not change with frequency for pulsating load magnitudes
lower than ∆d = 6 A. The simulation results in Fig. 11(b) and
(c) validate these predictions.

We note that the results presented so far in this section are
for the nominal parameters of the closed-loop controller given
in Table II. The region of reachable operation can also be
altered by variations of the controller parameters. For instance,
Fig. 12 illustrates the variation of the maximum allowable duty
ratio of the pulsating load with variations of its magnitude for
three different values of the d-axis voltage-loop gain Kdv . We
observe that the region of reachable operation increases as Kdv

decreases. Similar analyses can be performed for other con-
troller parameters as well, and appropriate controller parame-
ters can be chosen, depending on the application.

C. Diode Rectifier Load

Next, we investigate how the reaching criterion can be ex-
tended to the case of a nonlinear diode rectifier load. The PWL
model of the overall system (comprising the three-phase VSI
and the diode rectifier) is described in Section II. For the diode
rectifier load, there are additional switching states due to the
voltage-dependent switching of the diodes. Fig. 13 illustrates
two simulation results that are obtained by implementing the
PWL models of the overall system. Clearly, for one case, the
d-axis voltage-error trajectories converge to the orbit, whereas,
for the other case, they do not. As for passive loads, the simula-
tion results agree with the predictions of the reaching criterion
derived in Section III. Fig. 14 illustrates the variations of the
minimum eigenvalues of the augmented P and Q matrices
[obtained by solving LMIs (19) and (22), respectively] with
variation of the VSI output voltage (va_1, vb_1, vc_1) total
harmonic distortion (THD) for the diode rectifier load. As in
the case of passive loads, distinction among the sliding-mode
and asymptotic mode of convergence is obtained using the
criteria described in [20]. The THD is varied by changing
the values of the load inductors (La2, Lb2, and Lc2) and the
output capacitor (CD) of the diode rectifier load. In Fig. 14,

Fig. 13. Simulation results illustrating the d-axis voltage-error trajectories for
a three-phase VSI connected to a diode rectifier with a voltage-loop gain of
Kdv = 250 for the following load THDs: (a) 13.5% and (b) 19.8%.

Fig. 14. Plot showing the variation of the minimum eigenvalues of the
augmented P and Q matrices [obtained by solving LMIs (19) and (22),
respectively] with the output-voltage THD for a three-phase VSI with diode
rectifier load. The solid and dashed lines correspond to the reachable and
unreachable regions, respectively.

the range of THD is thus chosen, because it accounts for the
reachable and unreachable regions of operation. Time-domain
results are only illustrated for one reachable case and one
unreachable case. Above a THD of 19%, the dynamics are
expected to be unreachable for the VSI-load system considered
in this paper. Comparison of these results with those in Fig. 4(a)
illustrates that, for a given value of voltage-loop gain Kdv (for a
load-phase angle φ = 30◦ and an apparent power of 2.5 kVA),
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Fig. 15. Variation of the reaching conditions of the VSI-load system with
changes in the load power and the d-axis voltage-loop compensator gain for
a diode rectifier load.

the reachable region for the passive load is higher than that
for the nonlinear loads. Furthermore, variation of the reaching
conditions of the VSI with load power and the gain of the
d-axis voltage-loop compensator is illustrated in Fig. 15. From
Fig. 15, we observe that the region of reachable operation
shrinks with decrease in the load power and is also dependent
on Kdv . Similar analyses of the reaching conditions with other
controller parameters can help in designing controllers that
ensure the global stability of the VSI-load system for different
operating conditions.

Finally, the steady-state stability of the system can be pre-
dicted by using the CLF-based approach [given by (23)], as
illustrated in Fig. 16(a), and the impedance criterion [given by
(24)], as illustrated in Fig. 16(b). The small-signal impedance
of the diode rectifier is obtained using the impedance matching
procedure described in [36]. In Fig. 16(b), we illustrate only
the positive-sequence small-signal impedance. The negative-
sequence and zero-sequence small-signal impedances also yield
similar results. For this case, the region of “steady-state” stable
operation and the region of reachable operation are the same.

VI. SUMMARY AND CONCLUSION

We develop a methodology to investigate the impacts of
passive (RL and RC) and nonlinear (diode rectifier) loads on
the reaching conditions of a three-phase VSI. Using CLFs, the
reaching criterion is developed for PWL models of the VSI
and the loads. The predictions of the reaching criterion are
validated by time-domain simulation results. Furthermore, the
CLF-based approach is extended to investigate the stability of
the nominal (period-1) orbit. Such a technique can be used to
predict the fast-scale as well as slow-scale dynamics of the
system without the computational overhead of solving complex
nonlinear maps. Comparisons of the predictions of the reaching
criterion with those of the steady-state stability analyses (based
on CLF as well as the small-signal impedance criterion) demon-
strate the need for the reaching criterion to predict the global
stability of the VSI-load system. Using some specific exam-
ples, we demonstrate how, under certain operating conditions,
although the system satisfies the steady-state stability criteria,
its reaching conditions are not guaranteed. The simulation
results show that the state-error trajectories will approach the
equilibrium orbit, provided that the initial condition lies within

Fig. 16. (a) Variation of the minimum eigenvalue of the augmented P matrix
[obtained by solving (19)] of a three-phase VSI (with a voltage-loop gain of
Kdv = 250) with the THD for operating conditions where the system exhibits
period-1 stability. (b) Variation of the small-signal output impedance of the VSI
and the input impedance of the diode rectifier load for the cases marked (v) and
(vi) in Figs. 14 and 16(a).

its vicinity; however, its reachability from any arbitrary initial
condition is not guaranteed. This discrepancy is because the
steady-state stability analysis techniques assume the existence
of an orbit. However, for global stability of the system, it
is necessary to first ascertain orbital existence (which can be
predicted by the reaching criterion described in this paper).
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Furthermore, the predictions of the reaching criterion for the
VSI-load system indicate that the range of reachable operating
conditions can significantly vary for different types of loads.
For instance, for the same apparent power and load phase
angles, higher values of voltage-loop gains are required to
ensure the reachability for the case of the diode rectifier load,
as compared to the passive loads. We observe that variations
of the nature of the load and the power drawn by it can also
have an impact on the reaching conditions of the overall system.
Furthermore, we demonstrate that, for periodically pulsating
loads, the reaching conditions can vary (compared to reaching
condition predictions with constant loads) with changes in the
duty ratio of the load pulse. The analysis in this paper demon-
strates that the reaching conditions of the system vary with
changes in the voltage-loop compensator gains. Similar results
can be obtained for the variation of other controller parameters
as well. Thus, the predictions of the reaching criterion can be
used to select controller gains and bandwidths that increase
the region of globally stable operation of the VSI for different
load/operating conditions.

However, the analysis procedure presented in this paper has
to be further modified to account for smooth nonlinear loads
(for instance, an inverter supplying a motor load), where the
system equations are described by piecewise nonlinear models.
The analysis procedure can also be extended to other power
converter types as well as interconnected networks of convert-
ers, such as parallel or cascaded connection, with appropriate
modifications to account for the interconnection effects. These
issues are part of our current research focus.

APPENDIX

DEFINITIONS OF MATRICES FOR THE PWL MODELS OF

THE THREE-PHASE VSI WITH DIFFERENT LOAD TYPES

A. Inductive Load

For the inductive load, the definitions of the various vectors
and matrices that are described in Section II are given as
follows:

iabc
1 =


 ia_1

ib_1

ic_1


 vabc

1 =


 va_1

ib_1

ic_1




iabc
2 =


 ia_2

ib_2

ic_2


 vabc

2 =


 va_2

ib_2

ic_2




K1 =



− (rL1+rC1)

L1
0 0

0 − (rL1+rC1)
L1

0

0 0 − (rL1+rC1)
L1




K2 =


− rC1

L1
0 0

0 − rC1
L1

0
0 0 − rC1

L1




K3 =


− 1

L1
0 0

0 − 1
L1

0
0 0 − 1

L1


 K4 = 03×3

K5 =




2
3L1

(2Sa1 − Sb1 − Sc1)
2

3L1
(2Sb1 − Sc1 − Sa1)

2
3L1

(2Sc1 − Sa1 − Sb1)




K6 =




1
C1

0 0
0 1

C1
0

0 0 1
C1




K7 =


− 1

C1
0 0

0 − 1
C1

0
0 0 − 1

C1


 K8 = 03×3 K9 = 03×3

K10 = 03×1.

L1 =


 rC1

LRL
0 0

0 rC1
LRL

0
0 0 rC1

LRL




L2 =



− (RRL+rC1)

L1
0 0

0 − (RRL+rC1)
L1

0

0 0 − (RRL+rC1)
L1




L3 =




1
LRL

0 0
0 1

LRL
0

0 0 1
LRL




and L5–L11 are 03×3.
The overall state-space equations of the system in the syn-

chronous reference frame for the inductive load are described
by (12). The definitions of the vectors and matrices in (12) are
shown at the bottom of the next page. The sensor gain matrix is
given by

Hp =




0 0 0 0 −Hdv 0
0 0 0 0 0 0

−Hdi 0 0 0 0 0
0 0 0 0 0 0
0 −Hqi 0 0 0 0
0 0 0 0 0 0


 .

B. Capacitive Load

For the capacitive load, the definitions of the various vectors
and matrices that are described in Section II are given as
follows:

iabc
1 =


 ia_1

ib_1

ic_1


 vabc

1 =


 va_1

ib_1

ic_1




iabc
2 =


 ia_2

ib_2

ic_2


 vabc

2 =


 va_2

ib_2

ic_2




K1 =



− (rL1+rC1)

L1
0 0

0 − (rL1+rC1)
L1

0

0 0 − (rL1+rC1)
L1




K2 =


− rC1

L1
0 0

0 − rC1
L1

0
0 0 − rC1

L1
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K3 =


− 1

L1
0 0

0 − 1
L1

0
0 0 − 1

L1


 K4 = 03×3

K5 =




2
3L1

(2Sa1 − Sb1 − Sc1)
2

3L1
(2Sb1 − Sc1 − Sa1)

2
3L1

(2Sc1 − Sa1 − Sb1)




K6 =




1
C1

0 0
0 1

C1
0

0 0 1
C1




K7 =


− 1

C1
0 0

0 − 1
C1

0
0 0 − 1

C1


 K8 = 03×3 K9 = 03×3

K10 = 03×1.

L4 =




1
CRC

0 0
0 1

CRC
0

0 0 1
CRC




and L1–L3 and L5–L11 are 03×3.

The overall state-space equations of the system in the syn-
chronous reference frame for the capacitive load are described
by (12). The definitions of the vectors and matrices in (12) are
shown at the bottom of the page. The sensor gain matrix is
given by

Hp =




0 0 0 0 −Hdv 0
0 0 0 0 0 0

−Hdi 0 0 0 0 0
0 0 0 0 0 0
0 −Hqi 0 0 0 0
0 0 0 0 0 0


 .

C. Diode Rectifier Load

For the diode rectifier load, the definitions of the various
vectors and matrices that are described in Section II are given
as follows:

iabc
1 =

[
ia_1

ib_1

ic_1

]
vabc
1 =

[
va_1

ib_1

ic_1

]

iabc
2 =

[
ia_2

ib_2

ic_2

]
vabc
2 =

[
va_2

ib_2

ic_2

]

Inductive Load:

xdq(t) = [ id1 iq1 id2 iq2 vd1 vq1 ]T

Bdq_i =
[

4
3L1

(
Sd1 −

1
2
Sq1

)
Vin

4
3L1

(
Sq1 −

1
2
Sd1

)
Vin 0 0 0 0

]T

Adq_i =




− 1
L1

(rL1 + rC1) −ω rC1
L1

0 − 1
L1

0
−ω − 1

L1
(rL1 + rC1) 0 rC1

L1
0 − 1

L1
rC1
LRL

0 − 1
LRL

(RRL + rC1) −ω 1
LRL

0
0 rC1

LRL
−ω − 1

LRL
(RRL + rC1) 0 1

LRL
1

C1
0 1

C1
0 0 −ω

0 1
C1

0 1
C1

−ω 0




Capacitive Load:

xdq(t) = [ id1 iq1 vd1 vq1 vd2 vq2 ]T

Bdq_i = [ 4
3L1

(
Sd1 − 1

2Sq1

)
Vin

4
3L1

(
Sq1 − 1

2Sd1

)
Vin 0 0 0 0 ]T

Adq_i

=




− 1
L1

(
rL1 + RRCrc1

RRC+rc1

)
−ω − RRC

L1(RRC+rc1)
0 − 1

L1

(
rc1

RRC+rc1

)
0

−ω − 1
L1

(
rL1 + RRCrc1

R+rc1

)
0 − RRC

L1(RRC+rc1)
0 − 1

L1

(
rc1

RRC+rc1

)
1

C1

(
RRC

RRC+rc1

)
0 − 1

C1(RRC+rc)
−ω 1

C1(RRC+rc)
0

0 1
C1

(
RRC

RRC+rc1

)
−ω − 1

C1(RRC+rc)
0 1

C1(RRC+rc)

1
CRC

(
RRC

RRC+rc1

)
0 1

CRC(RRC+rc)
0 − 1

CRC(RRC+rc)
−ω

0 1
CRC

(
RRC

RRC+rc1

)
0 1

CRC(RRC+rc)
−ω − 1

CRC(RRC+rc)
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K1 =



− (rL1+rC1)

L1
0 0

0 − (rL1+rC1)
L1

0

0 0 − (rL1+rC1)
L1




K2 =


− rC1

L1
0 0

0 − rC1
L1

0
0 0 − rC1

L1




K3 =


− 1

L1
0 0

0 − 1
L1

0
0 0 − 1

L1


 K4 = 03×3

K5 =




2
3L1

(2Sa1 − Sb1 − Sc1)
2

3L1
(2Sb1 − Sc1 − Sa1)

2
3L1

(2Sc1 − Sa1 − Sb1)




K6 =




1
C1

0 0
0 1

C1
0

0 0 1
C1




K7 =


− 1

C1
0 0

0 − 1
C1

0
0 0 − 1

C1


 K8 = 03×3 K9 = 03×3

K10 = 03×1.

L7 =


 rC1

L2
0 0

0 rC1
L2

0
0 0 rC1

L2




L8 =




rL2
L2

0 0
0 rL2

L2
0

0 0 rL2
L2




L9 =




2
3L2

(2Sa2 − Sb2 − Sc2)
2

3L2
(2Sb2 − Sc2 − Sa2)

2
3L2

(2Sc2 − Sa2 − Sb2)




L10 = [ Sa2
CD

Sb2
CD

Sc2
CD

]

L11 = −1/RDCD, and L1–L6 are 03×3.
The switching functions of the diode rectifier load can be

described as follows:

Sa2 =

{ 1, va3 − vD > 0
−1, va3 − vD < 0
0, va3 − vD = 0

Sb2 =

{ 1, vb3 − vD > 0
−1, vb3 − vD < 0
0, vb3 − vD = 0

Sc2 =

{ 1, vc3 − vD > 0
−1, vc3 − vD < 0
0, vc3 − vD = 0

where

va3 = va2 − L2
dia_2

dt
− ia_2rL2

vb3 = vb2 − L2
dib_2

dt
− ib_2rL2

vc3 = vc2 − L2
dic_2

dt
− ic_2rL2 .

To test the efficacy of the PWL model, we compare the states
of this model with that predicted by Saber, which is a standard

Fig. 17. Comparison of the output voltage and input current of the diode
rectifier predicted by the PWL model with those predicted by a Saber [37]
simulation of the diode rectifier load.

simulation package for power electronics simulations. We note
that, in the Saber model, we use ideal diodes (i.e., that they
have zero ON-state drop, negligible rise and fall times, and no
reverse recovery). Fig. 17 illustrates that there is a one-to-one
match between the two models. We note here that, for both the
models, we choose a fixed sampling step (i.e., 10 µs).

The overall state-space equations of the system in the syn-
chronous reference frame for the diode rectifier load are de-
scribed by (12). The definitions of the vectors and matrices in
(12) are given as follows:

xdq(t) = [ id1 iq1 id2 iq2 vd1 vq1 vD ]T

Bdq_i =
[

Sd1
L1

Vin
Sq1
L1

Vin 0 0 0 0 0
]T

Adq_i =




a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77




where the elements of Adq_i are given as follows:

a11 = − 1
L1

(
rL1 +

rC1

1 + ω2r2
C1C

2
1

)

a12 =ω

(
1 − C1r

2
C1

L1 (1 + ω2r2
C1C

2
1 )

)
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a13 =
1
L1

rC1

1 + ω2r2
C1C

2
1

a14 =
1
L1

ωr2
C1C1

(1 + ω2r2
C1C

2
1 )

a15 = − 1
L1

1
1 + ω2r2

C1C
2
1

a16 = − ωrC1C1

L1 (1 + ω2r2
C1C

2
1 )

a17 = 0 a21 = −ω

(
1 − C1r

2
C1

L1 (1 + ω2r2
C1C

2
1 )

)

a22 = − 1
L1

(
rL1 +

rC1

1 + ω2r2
C1C

2
1

)

a23 =
1
L1

ωr2
C1C1

(1 + ω2r2
C1C

2
1 )

a24 =
1
L1

rC1

(1 + ω2r2
C1C

2
1 )

a25 =
ωrC1C1

L1 (1 + ω2r2
C1C

2
1 )

a26 = 0 a27 = 0

a31 =
1
L2

rC1

(1 + ω2r2
C1C

2
1 )

a32 =
1
L2

ωr2
C1C1

(1 + ω2r2
C1C

2
1 )

a33 = − 1
L2

(
rC1

1 + ω2r2
C1C

2
1

+ rL2 +
3
2

RLrC2

RL + rC2
S2

d2

)

a34 =
1
L2

(
ωL2 −

3
2

RLrC2

RL + rC2
Sd2Sq2 −

ωr2
C1C1

(1 + ω2r2
C1C

2
1 )

)

a35 =
1
L2

1
(1 + ω2r2

C1C
2
1 )

a36 =
1
L2

ωrC1C1

(1 + ω2r2
C1C

2
1 )

a37 = − 1
L2

RL

RL + rC2
Sd2 a41 = − 1

L2

ωr2
C1C1

(1 + ω2r2
C1C

2
1 )

a42 =
1
L2

rC1

(1 + ω2r2
C1C

2
1 )

a43 =− 1
L2

(
ωL2+

3
2

RDrC2

RD+rC2
Sd2Sq2−

ωr2
C1C1

(1 + ω2r2
C1C

2
1 )

)

a44 = − 1
L2

(
rC1

(1 + ω2r2
C1C

2
1 )

+ rL2

)

a45 = − 1
L2

ωrC1C1

(1 + ω2r2
C1C

2
1 )

a46 =
1
L2

1
(1 + ω2r2

C1C
2
1 )

a47 =
RD

L2
Sq2 a51 =

1
C1

(
1

(1 + ω2r2
C1C

2
1 )

)

a52 =
ωrC1

(1 + ω2r2
C1C

2
1 )

a53 = − 1
C1 (1 + ω2r2

C1C
2
1 )

a54 = − ωrC1

(1 + ω2r2
C1C

2
1 )

a55 = − ω2rC1C1

(1 + ω2r2
C1C

2
1 )

a56 =
ω

(1 + ω2r2
C1C

2
1 )

a57 = 0 a61 = − ωrC1

(1 + ω2r2
C1C

2
1 )

a62 =
1
C1

(
1

(1 + ω2r2
C1C

2
1 )

)
a63 = − ωrC1

(1 + ω2r2
C1C

2
1 )

a64 = − 1
C1 (1 + ω2r2

C1C
2
1 )

a65 = − ω

(1 + ω2r2
C1C

2
1 )

a66 = − ω2rC1C1

(1 + ω2r2
C1C

2
1 )

a67 = 0

a71 = 0 a72 = 0 a73 =
3
2

RD

RDCD + rC1CD
Sd2

a74 =
3
2

RD

RDCD + rC1CD
Sq2 a75 = 0 a76 = 0

a77 = − 1
RDCD + rC1CD

.

The sensor gain matrix is given by

Hp =




0 0 0 0 −Hdv 0 0
0 0 0 0 0 0 0

−Hdi 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −Hqi 0 0 0 0 0
0 0 0 0 0 0 0


 .
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