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Abstract—A methodology to analyze the reaching condition of a
switching power converter (SPC) using Lyapunov’s direct method
and a piecewise linear model is outlined. By using a multiple Lya-
punov function, the reaching criteria for orbital existence of a SPC
is formulated as a linear matrix inequality that is solved using a
convex optimization solver. Further, the criterion is modified to
distinguish the different modes (i.e., sliding and asymptotic modes
and combination of the two fundamental modes) of convergences
of the reaching dynamics. The applicability of the reaching criteria
for solving practical problems using case illustrations of dc–dc con-
verters and three-phase dc–ac converters operating with different
control and modulation techniques is demonstrated. The method-
ology developed in this paper can be potentially extended to other
SPCs and may lead to the development of optimal-sequence con-
trol techniques that can dynamically change the mode and the rate
of convergence of a SPC.

Index Terms—Convergence modes, linear matrix inequality,
Lyapunov’s stability, piecewise linear (PWL) systems, reaching
conditions, switching power converters (SPCs).

I. INTRODUCTION

CONVENTIONAL stability analyses of switching power
converters (SPCs) using averaged models [2], [3] as well

as nonlinear maps [4]–[6] assume orbital existence, i.e., that
the converters are operating in their steady state. However, for
global stability, convergence of the reaching dynamics of an
SPC to its orbit needs to be established first. Such analyses can
predict whether the state-error trajectories of the SPC converge
to its orbit or not for any arbitrary initial condition (either during
start-up or transients) and can have a profound impact on the
dynamic response of the SPC. In [7]–[14], convergence of the
state-error trajectories of a SPC to its orbit has been demon-
strated using either time-domain simulations or by numerically
solving the differential equations describing the SPC dynamics.
However, because these techniques can have significant com-
putational overhead (even for simple SPCs), there exists a need
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Fig. 1. Schematic illustrating the possible switching-error trajectories for
a SPC in the vicinity of a switching surface. (a) Trajectories approach the
switching surface from both the sides. (b) Trajectories approach the switching
surface from one side and leave from the other. (c) Trajectories leave the
switching surface from both sides. (d) Trajectories are tangential to the
switching surface on either side.

to develop analytical approaches to predict convergence of the
SPC state-error trajectories. An analytical approach to predict
the reaching condition of a single-switch dc–dc boost SPC has
been described in [15]. According to this approach, if the equi-
librium solutions of the SPC in the saturated region (i.e., when
the switch is permanently turned on or off) are virtual [16] (i.e.,
not attainable), orbital existence is guaranteed. However, if the
equilibrium solutions in the saturated region are real (i.e., attain-
able), then the orbital existence of the SPC for an arbitrary initial
condition depends on the region of attraction of the real solution.
The limitations of this approach include the lack of a systematic
methodology to determine the saturated virtual equilibrium so-
lutions and the region of attractions of the saturated real equilib-
rium solutions, and problems associated with extending the ap-
proach to SPCs with multiple switches and higher dimensions,
and those operating with time-delayed feedback.

In [17]–[19], a sliding-mode theory based approach has been
described, which can be used to determine the existence of the
switching surface(s) of a SPC. For a SPC with switching sur-
faces, this theory, using a set of common Lyapunov functions,
predicts conditions for which the state-error trajectories reach
the switching surfaces and once there, slide on these surfaces
(i.e., that they satisfy existence) [20]. However, determining
the common Lyapunov functions is a key challenge. Further-
more, nonexistence of a common Lyapunov function for a SPC
switching model does not preclude orbital existence [24]. Thus,
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Fig. 2. Schematics illustrating (a)–(c) sliding and (d)–(f) asymptotic modes of convergences for a SPC. (a) and (d) Convergence modes for a SPC with a single
ideal switching surface. (b) and (e) Convergence dynamics for a SPC with two ideal switching surfaces. (c) and (f) Convergence dynamics for a SPC with two
quasi-ideal switching surfaces.

sliding-mode theory only predicts sliding-mode convergence
but, not asymptotic or mixed-mode (combination of the sliding
and asymptotic modes) convergences.

Because of the above-mentioned limitations, there exists a
need to develop new analytical criteria for orbital existence of
SPC switching models. Since the dynamics of a SPC can be cap-
tured using a piecewise linear (PWL) model [1], recent works in
the hybrid systems and controls community (as outlined in [21]
and references therein) are of relevance. For instance, in [21],
the author proposes a technique for PWL system based on mul-
tiple Lyapunov functions to predict the dynamics and conver-
gence of the states to the equilibrium. However, unlike a SPC
(where the steady-state exhibits orbital motion), for the PWL
systems considered in [21], the equilibrium is a fixed point.

This is because, in a practical SPC, the switching surfaces are
not ideal and there exists a finite boundary layer around each
switching surface. As described in Sections III and IV, this com-
plicates the analysis of orbital existence of a multi-switch SPC.
For instance, in a parallel SPC, if one or more converter oper-
ates with more than one switching state in a finite time interval
while the rest of the converters do not change states, the rela-
tive duration of the sequences over the time interval needs to be
considered for orbital existence. Finally, the techniques in [21]
also have to be modified for time-delayed PWL systems (such
as networked SPCs [23]).

Therefore, in this paper, we modify the multiple Lyapunov
function based criterion in [21] to predict the reaching criterion
for orbital existence of SPCs. First, in Section II, the various
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reaching mechanisms of a SPC with ideal and quasi-ideal
switching surfaces [20] are illustrated. For both of these cases,
the reaching dynamics of the SPC under asymptotic as well
as sliding-mode conditions are illustrated. Subsequently, in
Section III, we describe a PWL model of the SPC. Such a
model can describe the dynamics of several dc–dc as well as
multiphase dc–ac/ac–dc/ac–ac SPCs (modeled in synchronous
reference frame). Subsequently, we derive the reaching crite-
rion for orbital existence and also demonstrate how the criterion
can be modified to distinguish among the different convergence
modes. The multiple Lyapunov functions are determined by
formulating a convex optimization problems using the PWL
model of a SPC (that operate with or without feedback delay)
and solving the resulting linear-matrix inequality (LMI) [22]
using a standard LMI solver.

Finally, in Section IV, the application of the reaching criteria
for different SPCs is illustrated. The reaching criteria can be
used to supplement existing steady-state stability analyses tech-
niques (either based on small-signal averaged models [2], [3] or
nonlinear techniques using maps [4]–[6]) to predict the global
stability of SPCs. Further, the knowledge of the modes of con-
vergence of the reaching dynamics (asymptotic-, sliding-mode-,
or mixed-mode-convergences) can potentially facilitate design
of SPCs with faster dynamics responses. To demonstrate the
wide application of the reaching criteria proposed in this paper,
the following practical case illustrations are demonstrated.

• Single-switch dc–dc boost SPC: For this SPC, the impacts
of parameter variations, control schemes and modulation
strategies on the reaching conditions are investigated. Fur-
ther, a comparison of the reaching conditions of the SPC
operating in continuous conduction mode (CCM) and dis-
continuous conduction mode (DCM) is presented.

• Multimodule parallel dc–dc boost SPC: For this SPC, a
comparison of the impacts of synchronous modulation and
interleaved modulation on the reaching conditions is pre-
sented.

• Cascaded SPC comprising a single-switch dc–dc boost
SPC followed by a single-switch dc–dc buck SPC: For
this SPC, the impacts of different start-up mechanisms on
the reaching conditions are investigated.

• Network of parallel-connected three-phase voltage-source
inverters (VSIs): For such SPCs, control information is ex-
changed over a communication network [23]. The impacts
of the time delay (which is inherent in such information
exchange) on the reaching condition are investigated.

II. ILLUSTRATIONS OF REACHING MECHANISMS FOR SPCS

WITH IDEAL AND QUASI-IDEAL SWITCHING SURFACES

Due to the switching actions of the power devices, the dynam-
ical model of a typical SPC is discontinuous in nature [20]. The
solution of such models is defined everywhere except at the sur-
faces of discontinuities (i.e., at the switching surfaces). Fig. 1
illustrates all (theoretically) possible switching-error trajecto-
ries for a SPC in the vicinity of an “ideal” discontinuous
surface . The power devices of the SPC are turned
on or off depending on whether the switching-error trajectory
lies above or below the switching surface . Of these,

Fig. 3. Experimental setup of a dc–dc SPC with two modules. The board is
designed to perform experiments on single-module dc–dc boost SPC (Fig. 4),
two-module parallel dc–dc boost SPC (Fig. 10), and a cascaded SPC consisting
of a front end boost SPC followed by a buck SPC (Fig. 14).

trajectories illustrated in Fig. 1(c) are not physically stabilizable
(because the trajectories leave the switching surface from either
side), while dynamics in Fig. 1(d) are inadmissible for SPCs
(because the trajectories move tangentially to the switching sur-
face) and hence they cannot lead to switching. Only the trajec-
tories outlined in Fig. 1(a) and (b) are of practical relevance.

Fig. 1(a) illustrates sliding motion [17], [18] because the tra-
jectories on either side of the switching surface point towards it.
For a second-order system with one switching surface ,
such a dynamics is illustrated in Fig. 2(a). The plot between

and (that represents one of the states of the SPC in
error coordinates) shows that once hits the switching sur-
face, it stays in its neighborhood. The dynamics of the resul-
tant reduced-order model on the sliding manifold is assumed
to be smooth and hence, the stability of the motion can be de-
termined by conventional techniques [20]. For a stable system,
as on the sliding manifold, switching occurs at pro-
gressively faster repetition rates culminating at infinity corre-
sponding to the point [18], [20].

On the same note, Fig. 2(b) illustrates the dynamics of a
higher order SPC with two switching surfaces and

and another state in error coordinates with
varying time . This is plotted as two separate trajectories (be-
cause the dimension of the system including time is four): one
illustrating the evolution of and with , while the
second illustrating the mirror image of the evolution of
and with . In the figure, these two trajectories are symmetric
(in ) about the equilibrium point. The plot shows that the tra-
jectory described by and exhibits sliding motion
and on the sliding manifold. Eventually convergence
occurs at when the switching frequency
is infinite.

In general, for a SPC described by an th-order dynamical
system and comprising sliding surfaces, the order of the dy-
namical system on the sliding surface is [17]. If the re-
duced-order dynamical system is stable, the error trajectories
reach the equilibrium point when the switching frequency ap-
proaches infinity. On the whole, the reaching dynamics for such
a system has to be investigated in two steps: one which predicts
reaching up to the sliding manifold and the other, which predicts
convergence of the reduced-order motion on the sliding mani-
fold to the equilibrium.
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Fig. 4. Schematic and state-space equations of the power stage and current-mode controller of a single-switch dc–dc boost SPC. The matrix A for a single-
switch dc–dc boost SPC (along with other single-module SPCs) is given in Appendix A. 0 represents a matrix with p rows and q columns, all of whose elements
are zero.

TABLE I
PARAMETERS OF THE SINGLE-SWITCH DC–DC BOOST SPC (FIG. 4)

A practical SPC, however, is not designed to achieve an
infinite switching frequency. For such a system, as shown
in Fig. 2(c), an ideal sliding manifold is replaced with a
quasi-sliding surface (which ensures finite switching fre-
quency). For such a case, the equilibrium point is replaced with
an orbit, which has infinite possibilities including periodic-,
quasi-periodic-, and chaotic-orbits [4]–[6]. Thus, convergence
of reaching dynamics of a finite-frequency SPC culminates in
an orbit and not an equilibrium point as in the case of ideal
sliding motion.

Now, if the trajectories in the vicinity of a switching sur-
face, as illustrated in Fig. 1(b), approach the switching surface
from one side and leave it from the other, reaching dynamics
of the corresponding SPC, with ideal or quasi-ideal switching
surface(s), can converge, respectively, to its equilibrium point
or orbit asymptotically. Thus, the SPC reaching dynamics ex-
hibits no sliding motion. By following the same rationale as out-
lined above for the cases illustrated in Fig. 2(a)–(c), one can ex-

plain the reaching dynamics of the SPC for asymptotic conver-
gence [as illustrated in Fig. 2(d)–(f)] for the ideal and quasi-ideal
switching surfaces. Once again, for the ideal case, the switching
frequency of the SPC on reaching equilibrium is infinity; while
for the quasi-ideal case, a finite-frequency orbital motion is at-
tained. However, unlike sliding-mode dynamics, which has two
modes of convergences, reaching dynamics for asymptotic con-
vergence has only one mode since all the states converge at the
same time to the equilibrium point or the orbit.

Finally, the reaching dynamics of a SPC can also exhibit a
combination of sliding- and asymptotic-modes of convergences,
which will be referred to as mixed-mode dynamics in this paper.
Such dynamics can occur if the parameters or the operating con-
ditions of the SPC undergo a change when the SPC is going
through a start-up or transient. If such a change results in a
transition of the SPC dynamics from one convergence mode to
the other, the overall mode of convergence is referred to as the
mixed-mode convergence.
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Fig. 5. (a) Variation of the minimum eigenvalues of the augmented P and Q matrices (obtained by solving LMIs (7), (12), and (10) for asymptotic convergence,
sliding-mode convergence, and unreachable regions, respectively) with input voltage for a single-switch dc–dc SPC with current-mode control and operating in
CCM. (b) Experimental results illustrating the reachable and unreachable regions with variation of the input voltage, V . (c) Experimental results illustrating
state-error trajectories in the reachable (V = 2:75 V) and unreachable (V = 1 V) regions. In (c), the error dynamics in the steady-state is also presented for
the reachable case. To obtain the phase portrait for this case and for the subsequent examples, the experimental data (from the oscilloscope) is retrieved as a data
file and plotted in the error coordinates.

III. DERIVATION OF REACHING CRITERIA

The class of SPCs considered in this paper can be described
by the following PWL state-space equation:

(1a)

In (1a), is an integer that represents the switching state of a
SPC, represent the SPC states, and

are matrices, is a column vector, and
represents the feedback time delay. Note that the SPC model

is nonlinear due to switching among the various PWL models
described by (1a). In this paper, only SPCs with linear con-
trollers and loads are considered. For SPCs with nonlinear con-
trollers or loads, the SPC dynamics can be described by piece-
wise nonlinear models; therefore, the analyses technique has to
be modified [24]. From this point onwards, the notation of time

is dropped and an arbitrary time-delayed vector is rep-
resented as or as . Thus, (1a) can be re-written
as

(1b)

Next, (1b) is translated to the error coordinates using ,
where represents the error vector and represents the steady-
state values of the SPC states when the switching frequency is
infinity. The modified state-space equation is given by

(2a)

Equation (2a) can be rewritten as

(2b)
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Fig. 6. Variation of the minimum eigenvalues of the augmented P and Q matrices (obtained by solving LMIs (7), (12), and (10) for asymptotic convergence,
sliding-mode convergence, and unreachable regions, respectively) with (a) load resistance (V = 3:5V,K = 10000; L = 128�H), (b) controller voltage-loop
gain (V = 3:5 V, L = 128 �H, R = 5 
), and input inductance (V = 3:5 V, K = 10000;R = 5 
).

Using

delay model (2b) in can be transformed to a distributed form
in variable

(2c)

where

and stability of (2c) implies stability of (2b).

A. Reaching Criteria Development

The reaching criteria of a SPC depends on the number of
noncomplementary switching functions, and the sequence of
switching states, which are generated by the noncomplementary
switching functions. To analyze the convergence of SPC state-
error trajectories, all possible nonredundant switching states and
nonrepetitive switching sequences that are obtained using the
noncomplementary switching functions have to be determined.
They are defined and illustrated below.

• Complementary switching functions: Complementary
switching functions are defined for a set of switches
where, if one switch is turned on, the other is turned off
and vice versa. For instance, a single-module dc–dc boost
SPC with one controllable switch, as shown in Fig. 4,
has one noncomplementary switching function. For such
a SPC operating in CCM, can take two values, namely

for and for . On the other
hand, a single-module dc–dc synchronous SPC with two
controllable switches (that operate complementarily) also
has one switching function (if dead-times are ignored).
However, if the SPC in Fig. 4 operates in DCM, can
take three values, namely for for

, and for , where represents the
switching state, when the controllable switch is turned off
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Fig. 7. (a) Variation of the minimum eigenvalues of the augmented P and Q matrices (obtained by solving LMIs (7), (12), and (10) for asymptotic convergence,
sliding-mode convergence, and unreachable regions, respectively) with input voltage for a single-switch dc–dc SPC with voltage-mode control and operating in
CCM. (b) Experimental results illustrating the reachable and unreachable regions with variation of the input voltage V . (b) Experimental results illustrating
state-error trajectories in the reachable (V = 3:25 V) and unreachable (V = 1 V) regions.

and the inductor current of the SPC has a nonzero value,
while represent the case, when the controllable switch
is turned off and the inductor current is zero.

• Redundant switching states: Two switching states are
classified as redundant states, if the state-space equations
of the SPC corresponding to those switching states are
identical. For instance, for each module of a three-phase
voltage-source inverter, as shown in Fig. 17, with three
noncomplementary switching functions and ,
the switching states , and

are redundant states (where
the value of varies from 1–6) and can be described by
the same state-space equation.

• Nonrepetitive switching sequences: Two switching se-
quences are classified as repetitive sequences, if they
consist of the same set of switching states, occurring
not necessarily in the same order. For instance, for a
single-module dc–dc boost SPC, as shown in Fig. 4,
operating in CCM, the sequence of followed by

(i.e., ) or followed by (i.e.,
) represent repetitive states. From the standpoint

of reaching-criteria development, two or more repetitive
sequence of states leads to the same conclusion. Hence,

only nonrepetitive switching sequences are considered for
the reaching condition analyses.

In general, the total number of feasible combinations of non-
repetitive switching sequences for an SPC operating in CCM is
given by

(3a)

where is the total number of noncomplementary switching
functions and is the number of redundant switching states.
For a SPC (with noncomplementary switching functions) op-
erating in DCM, the number of feasible nonrepetitive switching
sequences is given by

(3b)

This is because the number of switching states that each non-
complementary switching function can attain when the SPC is
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Fig. 8. Experimental results, illustrating state-error trajectories of a single-switch dc–dc boost SPC with (a) hysteretic modulation and (b) carrier-based PWM.
The state-error trajectories exhibit sliding and asymptotic modes of convergence for the two cases, respectively.

operating in DCM is three. In Appendix B, the procedure to ob-
tain (3a) and (3b) is illustrated.

To determine the reaching criterion of a SPC, a convex combi-
nation of multiple, positive-definite, quadratic Lyapunov func-
tion, (for the th switching sequence) is defined,
which is given by [21]

(4)

where is the number of switching states in a given sequence,
is a positive-definite

matrix, and , for any and
. Note that, for a positive-definite matrix, all of its eigen-

values are positive and hence, the minimum eigenvalue of
is greater than zero [25]. In Section IV, this property is used to
demonstrate the reachability bounds of the SPCs.

According to Lyapunov’s criterion, the trajectories of the SPC
converge towards the orbit for finite switching frequency (or
the equilibrium point for infinite switching frequency) provided

. To evaluate if (2c) satisfies this criterion, we obtain
the derivative of in (4), which is given by

(5a)

Using (2c), (5a) can be re-written in the matrix format as (5b),
shown at the bottom of the page. For any and because
the Lyapunov function (4) satisfies (for any

), we have . Therefore, by
adding this term to (5b), we obtain the inequality in (5c), shown
at the bottom of the page. This inequality can be rearranged in
a matrix format as (5d), shown at the bottom of the next page.
For constant matrices1 and , we can modify the matrix

(5b)

(5c)
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inequality of (5d) can be modified (by adding and subtracting
terms and ) as (5e), shown at the
bottom of the page. From (5e), it can be seen that the reaching
criterion for orbital existence is satisfied if all of
the matrix inequalities in (6a)–(6c), shown at the bottom of the
page, are satisfied.

To combine the matrix inequalities in (6a)–(6c) and eliminate
and , the following theorem [26] is used:

Theorem 1: There exists a symmetric matrix , such that

1Note that matrices R and R do not have any physical meaning and are
introduced only to facilitate the derivation of (7) from (5c).

if and only if

Using Theorem 1, is first eliminated from inequalities (6a)
and (6b). Next, is eliminated by applying Theorem 1 to the
resultant LMI and (6c), and the following matrix inequality is
obtained

(7)

(5d)

(5e)

(6a)

(6b)

(6c)
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Fig. 9. (a) Variation of the minimum eigenvalues of the augmented P and Q matrices (obtained by solving LMIs (7), (12), and (10) for asymptotic convergence,
sliding-mode convergence, and unreachable regions, respectively) with input voltage for an SPC operating in DCM with voltage-mode control. (b) Experimental
results illustrating the reachable and unreachable regions with variation of the input voltage, V . (c) Experimental results illustrating state-error trajectories in the
reachable (V = 5 V) and unreachable (V = 1 V) regions.

where
. Because , the matrix

inequality in (7) can be represented as a conventional convex op-
timization problem [27] with LMI constraints. This convex op-
timization problem is of the class of feasibility problems, which
involves obtaining a matrix such that the LMI in (7) is sat-
isfied. These problems can be solved by using computation-
ally efficient interior-point algorithms [28] and are available in
common mathematical tools like MATLAB [29].

If there are no solutions of for (7) (which is automati-
cally indicated in MATLAB when the total number of iterations
exceed a default threshold), the dual of is investigated to
confirm that the error trajectories of the SPC states do not con-
verge to the orbit [30], [31]. The dual of is defined by

(8)

where is a positive-
definite matrix. To confirm that the state-error trajectories of the
SPC do not converge to the orbit for the th switching sequence,

has to satisfy the following criteria:

and (9a)

or and

(9b)

As in (5)–(7), (9b) is satisfied, provided

(10)

where

If there are no solutions of for (7) but, there exist solutions
of for (10), the state-error trajectories of the SPC do not
converge to an orbit.
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Fig. 10. Schematic and state-space equations of a two-module parallel boost SPC with master-slave architecture where current reference information is transmitted
from the master module to the slave modules [33]. In the schematic, V represents the same input voltage source for both the modules.

B. Additional Reaching Criteria for Sliding-Mode and
Mixed-Mode Convergences

If a SPC described by (1b) satisfies (7), it ensures the conver-
gence of all the states of the SPC to their orbit. However, using
this criterion, the different modes of convergences cannot be dis-
tinguished. Because certain modes of convergence (like sliding-
mode convergence) typically have superior dynamics compared
to others (like asymptotic-mode convergence), knowledge of the
convergence mode can enable one to design a SPC with faster
dynamic response. Thus, additional criteria are required to iden-
tify the mechanisms of convergences for the following cases.

Case A: Switching Surfaces are Orthogonal Sliding
Surfaces: For a SPC with switching surfaces

, of which switching
surfaces are orthogonal, the th switching surface is a sliding
surface provided that [17]–[20]

(11a)

(11b)

for all values of where (for CCM) and
(for DCM) represents the switching states

on either side of the sliding surface, and are posi-
tive-definite matrices. By following a procedure similar to that
in Section III.A, the th switching surface is a sliding surface
provided that the following simultaneous LMIs are satisfied:

(12)

where
. For orthogonal sliding surfaces, convergence to

the sliding manifold (defined by
) is guaranteed if (12) is satisfied for

all sliding surfaces.
Next, to investigate the convergence of the state-error trajec-

tories from the sliding manifold to the orbit, a reduced-order
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Fig. 11. (a) Variation of the minimum eigenvalues of the augmented P and Q matrices (obtained by solving LMIs (7) for asymptotic convergence, (12) and (17)
for sliding-mode convergence, and (10) for unreachable regions, respectively) with input voltage for a two-module parallel dc–dc boost SPC with current-mode
control scheme and interleaved PWM. (b) Experimental results illustrating the reachable and unreachable regions with variation of the input voltage, V . (c)
Experimental results illustrating state-error trajectories in the reachable (V = 5 V) and unreachable (V = 2 V) regions. In (c), the error dynamics in the
steady-state is also presented for the reachable case.

PWL model of the SPC in the error coordinates is developed.
As in (2c), the model is given by

(13)

where , and . In
(13), the order of the original SPC model is reduced by ap-
plying the sliding condition for the sliding surfaces, i.e.,

[17]. To determine the reaching cri-
teria for the reduced-order model, a procedure similar to that
used for obtaining the general LMI (7) in Section II.A is fol-
lowed. As in (3a) and (3b), the number of feasible combinations
of switching sequences is

for the SPC operating in CCM and DCM, respectively. Here,
is the number of switching surfaces that do

not exhibit sliding-mode convergence and is the number
of redundant switching states of the reduced-order model. Fol-
lowing (4), a convex combination of multiple, positive-definite
quadratic Lyapunov function is given by

(14)

where is the number of switching states in a given sequence
for the reduced-order model, , and

is a positive-definite matrix. As in (7), the reaching
criterion is satisfied by the remaining states, provided

(15)

where
and and . Using (15), a criterion is

developed to predict if the SPC state-error trajectories reach the
orbit from the sliding manifold, described by

.
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Fig. 12. (a) Variation of the minimum eigenvalues of the augmentedP andQmatrices (obtained by solving LMIs (7) for asymptotic convergence, (12) and (17) for
sliding-mode convergence, and (10) for unreachable regions, respectively) with input voltage for a two-module parallel dc–dc boost SPC with current-mode control
scheme and synchronous PWM. (b) Experimental results illustrating the reachable and unreachable regions with variation of the input voltage, V . (c) Experimental
results illustrating state-error trajectories in the reachable (V = 5 V) and unreachable (V = 2 V) regions.

TABLE II
PARAMETERS OF THE TWO-MODULE PARALLEL DC–DC BOOST SPC (FIG. 10)

Case B: Switching Surfaces are Sliding Surfaces But Not
Orthogonal: For a SPC with switching surfaces

, of which surfaces are
sliding but not orthogonal to each other, a two-step procedure is
employed. First, by following the procedure outlined in Case A,
we determine whether each switching surface is sliding or not.
If the switching surfaces satisfy (12), there exist nonorthog-
onal sliding switching surfaces, provided there exists a convex

combination of multiple, positive-definite Lyapunov function,
such that

(16a)

(16b)

where is the number of
switching states in a given sequence,
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Fig. 13. Experimental results, illustrating state-error trajectories of a parallel dc–dc boost SPC, where (a) module 1 operates with carrier-based PWM and exhibits
asymptotic convergence, and (b) module 2 operates with hysteretic modulation and exhibits sliding-mode convergence.

TABLE III
PARAMETERS OF THE CASCADED SPC CONSISTING OF A BOOST SPC FOLLOWED BY A BUCK SPC (FIG. 14)

, and is a positive-definite matrix. By following a
procedure similar to the one derived earlier for the general case,
all nonorthogonal switching surfaces are sliding, provided

(17)

where
. The condition to investigate whether the state-

error trajectories approach the orbit from the sliding manifold,
described by

can be determined by following the same procedure as in Case
A and is given by (15).

IV. RESULTS: ILLUSTRATIONS OF REACHING-CRITERIA

APPLICABILITY TO SOME COMMONLY USED SPCS

In this section, we first illustrate the application of the
reaching criteria to a single-switch dc–dc boost SPC. Subse-
quently, we extend the reaching criteria to some higher order

SPCs including 1) a two-module parallel connected dc–dc boost
SPC; 2) a cascaded SPC consisting of a single-switch dc–dc
boost SPC followed by a single-switch dc–dc buck SPC; and
3) a network of parallel connected three-phase VSIs. The goal
of this paper is to demonstrate the applicability of the reaching
criteria developed in this paper to different SPC topologies
with varying control and modulation scheme. The proposed
techniques can be used for further in-depth investigation of the
impacts of different SPC parameters and control schemes on
the reaching conditions for orbital existence and are part of our
future research goals.

To illustrate the predictions of the proposed reaching criteria,
the variations of the minimum eigenvalues of the augmented

. . .

matrix for the reachable region and the augmented

. . .
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TABLE IV
PARAMETERS OF THE THREE-PHASE VSI (FIG. 17)

matrix for the unreachable region are plotted, where
and are obtained by solving the LMIs in (7), (10),
(12), (15), and (17). Note that for positive-definite matrices, all
of its eigenvalues are positive. Therefore, the minimum eigen-
value of and can be used as to determine if the matrices
obtained by solving the LMIs in (7), (10), (12), (15), and (17)
are positive-definite or not.

The predictions of the theoretical analyses in Section III are
validated with experimental results using the setups shown in
Fig. 3 for the dc–dc SPCs and Fig. 18 for parallel connected
three-phase VSIs. For both the cases, the controllers are imple-
mented on a digital platform using TI DSP (TMS320C6713) and
Altera FPGA (Flex10 K series). From a practical standpoint, to
ensure that the components in the experimental setup do not ex-
ceed their rated currents and voltages, operating limits for the
states of the power-stage are set. Therefore, in the experimental
results presented in this paper, an orbit is considered to unreach-
able if the states of the power stage states reach the operation
limits.

A. Single-Switch dc–dc Boost SPC

Fig. 4 shows the schematic and state-space equations of a
single-switch dc–dc boost SPC following (1b). The parameters
of the single-switch dc–dc boost SPC is given in Table I. Be-
cause the closed-loop system has no feedback delays

in this case. When this SPC operates in CCM,
the number of combinations of switching sequences, obtained
using (3a) is three corresponding to either saturated operation
with or , or switching between and

or vice versa.
1) Impacts of Parametric Variations: First, the impacts of

variation in the input voltage on the reaching conditions of a
single-switch dc–dc boost SPC with current-mode control, as
illustrated in Fig. 4, are investigated. Fig. 5(a) illustrates the
variation of the minimum eigenvalues of the augmented
and matrices with varying input voltage. The predictions of
the reaching criteria are verified using experimental results,

as shown in Fig. 5(b). The experimental results illustrated
in Fig. 5(b) validate the prediction of the reaching criteria.
Fig. 5(c) illustrates the phase portraits for two input voltages
corresponding to the reachable and the unreachable regions,
respectively. In these plots, the marker (x) indicates the desired
equilibrium (corresponding to zero error at infinite frequency),
while the arrows indicate how the state-error trajectories evolve
with time. Additionally, the effects of load resistance ,
controller voltage-loop gain , and input inductance
on the reaching condition of the SPC are illustrated in Fig. 6.
Using analyses similar to that illustrated in this paper, other
parameters of the SPC can be varied as well to obtain the
corresponding reachability bounds.

2) Effect of Control Schemes (Voltage-Mode- versus Current-
Mode Control): In the previous section, the effects of variation
of system parameters on the reaching conditions of a single-
switch dc–dc boost SPC with current-mode control (based on
full-state feedback) were investigated. Next , those results are
compared with those obtained using a voltage-mode control
scheme (based on partial feedback, where only the capacitor
voltage is used for control). Fig. 7(a) illustrates how the reaching
conditions of the SPC (with voltage-mode control) vary with
input voltage. Comparison of these predictions with those in
Fig. 5(a) indicates that the range of input voltages where the
state-error trajectories converge to the orbit is smaller for the
voltage-mode control scheme as compared to the current-mode
control scheme. Using Figs. 5(b) and 7(b), we verify experi-
mentally that for V, the predictions of the reaching
condition are satisfied for the current-mode control scheme but,
not for the voltage-mode control scheme.

3) Impact of Modulation Strategies (Hysteresis versus Pulse-
Width Modulation): Next, the reaching conditions for two dif-
ferent modulation schemes are investigated (with
V); the first one is based on hysteretic modulation, where the
switching condition is given by

(18)
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Fig. 14. Schematic and state-space equations of a two-switch cascaded SPC, consisting of a front-end boost SPC followed by a buck SPC. For both the SPCs,
current-mode control is used.

and and
are constant gains. For this case, the SPC exhibits sliding-

mode convergence. For a ramp-based PWM scheme (shown in
Fig. 4) with a voltage-mode controller, the error trajectories of
the SPC converge asymptotically. The experimental results in
Fig. 8 agree with the predictions of the reaching criteria devel-
oped in Section III.

4) Reaching Condition Under DCM: So far, we have dis-
cussed the reaching condition of a single-switch dc-dc boost
SPC operating in CCM. Next, the reaching conditions of the
same SPC operating in DCM are investigated. For DCM, the

value of the input inductance is chosen to be 15 H. All
other parameters are the same as for the case of CCM. The
switching states are , and . Using
(3b), the number of combinations of switching sequences
for this SPC is 7. Fig. 9(a) shows how the reaching-condition
bound of the SPC operating in DCM varies with change in input
voltage. The experimental result in Fig. 9(b) and the state-error
trajectories in Fig. 9(c) match the theoretical predictions. The
predictions indicate that the range of reachable operating volt-
ages for the SPC, operating in DCM, is larger than that of the
SPC, operating in CCM.
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Fig. 15. (a) Variation of the minimum eigenvalues of the augmented P and Q matrices (obtained by solving LMIs (7), (12), and (10) for asymptotic convergence,
sliding-mode convergence and unreachable regions, respectively) with input voltage. (b) Experimental results illustrating the reachable and unreachable regions
with variation of the input voltage, V . (c) Experimental results illustrating state-error trajectories for a cascaded SPC for V = 1 V and V = 3:25 V, where
the boost SPC is turned on first with the buck SPC permanently turned on.

B. Extensions to Other Higher-Order Systems

In Section IV-A, theoretical predictions of the proposed
reaching criteria for different parameters and operating con-
ditions a single-switch dc–dc boost SPC were presented and
these results were validated with experimental results. In this
section, the extension of the proposed criteria to higher order
SPCs is investigated.

1) Parallel dc–dc Boost SPC: Fig. 10 shows the schematic
and state-space equations of a two-module parallel dc–dc boost
SPC [32]. The parameters of this SPC are given in Table II.
During the reaching period, the dynamics of this SPC differs
from the single-switch dc–dc boost SPC because of differences
in parameters of the different modules, phase shifts among
modulating signals or time-delays in information transfer
between the two modules [33]. For the two-module, parallel
dc–dc SPC, the impact of phase shift in the PWM carrier signals
of the converter modules on the reaching condition of the SPC
is investigated. Two cases are considered, namely synchronous
PWM, where the possible switching states are and

, and an interleaved PWM scheme, where the pos-
sible switching states are ,

and . Figs. 11(a) and 12(a) illustrate how the reaching
condition for such SPCs varies with input voltage. Both these
schemes satisfy the reaching criteria for V. How-
ever, for V, the interleaved PWM scheme does not
satisfy the reaching criteria. These predictions are confirmed
by the experimental results presented in Figs. 11(b) and 12(b).
Thus, while interleaved PWM schemes have inherent advan-
tages like reduced output-voltage ripple, the range of input
voltages in which it satisfies the reaching criteria is lower than
the synchronous PWM based scheme.

Next, a scenario where the master module operates with a
carrier-based PWM signal, while the slave module operates with
hysteretic modulation is investigated (for V). From
13, we observe that the state-error trajectories of the slave and
master modules exhibit sliding- and asymptotic-modes of con-
vergences, respectively. While the LMI in (7) is satisfied for the
entire SPC, the slave module also satisfies the sliding-mode con-
vergence criterion in (12). The reduced-order model described
in (13) satisfies the asymptotic convergence criteria (15).

2) Cascaded SPC Consisting of a Front-End Boost SPC Fol-
lowed by a Buck SPC: Next, the reaching conditions for a two-
switch cascaded SPC, consisting of a single-switch dc–dc boost



1466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008

Fig. 16. (a) Variation of the minimum eigenvalues of the augmented P andQmatrices (obtained by solving LMIs (7), (12), and (10) for asymptotic convergence,
sliding-mode convergence and unreachable regions, respectively). (b) Experimental results illustrating the reachable and unreachable regions with variation of the
input voltage, V . (c) Experimental results illustrating state-error trajectories in the reachable (V = 5 V) and unreachable (V = 1 V) regions for a cascaded
SPC, where both SPCs turned on at the same time.

SPC followed by a single-switch dc–dc buck SPC [34], as shown
in Fig. 14 is investigated. The parameters of this SPC are given
in Table III. For this SPC, the impacts of two start-up method-
ologies are compared: for the first case, we use the traditionally
used methodology, where the boost SPC is first turned on, and
allowed to reach its steady-state values, while the buck SPC is
permanently turned off initially, and for the second case, both
the SPCs are turned on at the same time. As a result, the fol-
lowing combinations of switching sequences are possible.
Case 1) When the buck SPC is turned off during start-up,

the possible switching states are and
, when the boost SPC is saturated, or

a combination of the two when the switches of the
boost SPC switch within each time period. When
the buck SPC is turned on, the possible switching
sequences are and or

and , when the buck SPC
operates in the saturated region, or a combination of

, and
.

Case 2) When both the SPCs start at the same time, all
possible combinations of switching sequences can
occur.

For the two cases outlined above, Figs. 15(a) and 16(a) show
the predictions of the reaching condition with variations in the
input voltage. For V, the state-error trajectories of
both Case 1 and Case 2 converge to the orbit. In Case 1, be-
cause the buck SPC is initially turned off, the overall system
requires longer time to converge 13 to an orbit; therefore, for

V, the start-up mechanism of Case 2 is more beneficial
from a dynamic response point of view. For V,
the mechanism outlined in Case 1 should be used because the
state-error trajectories corresponding to Case 2 do not converge
for all possible combinations of switching sequences. These pre-
dictions are verified by the experimental results in Figs. 15(b)
and 16(b).

3) Network of Parallel Connected Three-Phase VSIs:
Finally, the case of an interconnected network of
parallel-connected three-phase VSIs, as shown in Fig. 17
is considered. For deriving the reaching conditions of the
system, the model of the parallel VSI is transformed to the

-reference frame using Park’s transformation. Also, for
the interconnected network, control information is exchanged
over a wireless communication network [23]. For such SPCs,
time-delay bounds, as shown in Fig. 19(a), can be obtained
by varying the value of and obtaining , where
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Fig. 17. Schematic of a network of parallel connected three-phase VSIs and their state-space equations in the dqz-reference frame. For the results presented in
this paper, r varies from 1–6.

the reaching criteria is not satisfied. The predictions are
verified by the experimental results in Fig. 19(b). The data
for the actual delay are obtained by using Markov-chain delay
models, which are described in [23]. As the number of nodes

increase, the time delay bounds decrease, while the actual
time delay for information transfer increases. Such analyses
can be used to estimate the maximum number of nodes that
can be supported in the network.
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V. SUMMARY AND CONCLUSION

A systematic analytical technique to analyze the reaching
condition for orbital existence of a SPC is demonstrated. The
multiple-Lyapunov-function based methodology outlined in
this paper provides a mechanism for global stability analysis in
conjunction with existing local stability analysis methodologies
(e.g. those based on linearized averaged models, maps) by first
establishing orbital existence and then ascertaining the stability
of a periodic orbit. Currently, we are engaged in determining
the stability of a periodic orbit using the multiple Lyapunov
function approach. For a given periodic orbit, stability is estab-
lished by transforming the problem of determining the matrix
inequality (for orbital existence) to that of finding a matrix
equality condition.

The orbital existence criteria outlined in this paper is de-
rived based on nonrepetitive fundamental switching sequences
based on non-redundant and complementary switching states
of a SPC, which is described by a PWL model. The reaching
criteria, being analytical, modulation independent and valid for
all initial conditions for a given SPC and parametric set, needs
significantly reduced computational overhead as compared
to time-domain simulations. Apart from orbital existence,
the reaching criteria can also predict various modes of con-
vergences (including sliding- and asymptotic modes), which
is beneficial for selecting parameters for enhanced dynamic
performance. It can also be used for designing and analyzing
hybrid control schemes [24].

In this paper, the practical application of the reaching cri-
teria to a single and two-module dc-dc SPCs as well as a
time-varying three-phase VSI is demonstrated. For the single-
module dc-dc boost SPC, the effects of variations in the system
parameters, control strategies, and operating conditions on the
reaching condition bound is demonstrated. For two-module
parallel and cascaded dc-dc SPCs, the impact of the two
modulation schemes on the reaching condition is investigated.
The results of the reaching criteria indicate that while inter-
leaved PWM schemes have inherent advantages like reduced
output-voltage ripple, the range of input voltage for which
it satisfies the reaching criteria is lower than that obtained
using the synchronous PWM based scheme. For a cascaded
dc-dc SPC consisting of a front-end boost SPC followed by a
dc-dc buck SPC, mechanisms to enhance dynamic performance
during start-up are discussed. For a homogeneous network of
parallel connected three-phase VSIs, the proposed analyses
technique is used to determine the reachability bounds with
variations of number of nodes and time delays. Such analyses
can be used to estimate the maximum number of nodes that
can be supported in a given network.

For large power networks, time delay in information transfer
among the various SPCs is typically stochastic in nature. There-
fore, techniques for reaching condition analyses proposed in
this paper have to be re-formulated in a probabilistic framework
[24]. In addition, as the size and complexity of the power
network increases, the computational burden in determining
the reachability bounds, using the proposed technique may
increase. For such cases, development of techniques to simplify

Fig. 18. Experimental setup for two modules of the network of parallel con-
nected three-phase VSIs.

the reaching criteria has to be investigated. These are the foci
of our ongoing research.

APPENDIX A
DEFINITIONS OF POWER STAGE MATRICES FOR TYPICAL

SINGLE SWITCH DC-DC CONVERTERS

See Table V.

APPENDIX B
ILLUSTRATION OF SWITCHING SEQUENCES OF A SPC WITH

TWO SWITCHING FUNCTIONS

In this section, an example is presented to show how the
number of switching-sequence combinations (or that is de-
fined in Section III-A) is obtained. For a SPC with two switching
functions (like the parallel dc–dc SPC in Fig. 10), the possible
switching states are shown in Table VI. The combinations of
switching sequences that are possible for such SPCs are shown
in Table VII.

Thus, for a SPC with two switches, is given by

(B1)

For certain SPCs, some switching states may be redundant.
For instance, for a full-bridge dc–dc SPC with two switching
functions, and , the switching states ,
and are redundant states and can be de-
scribed by the same state-space equation. Thus, such redundant
states have to be subtracted, while estimating the total number
of combinations.

In general, for an SPC with switching functions and
redundant switching states, the total number of combinations
of sequences is . Also, for
an SPC with switching functions, possible set of
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Fig. 19. (a) Reaching criterion prediction results (obtained by solving LMIs (7) and (10)) showing delay bounds for a network of parallel connected VSIs with
voltage loop gain and the number of nodes. (b) Experimental results illustrating state-error trajectories in the reachable and unreachable regions. In (a), the bottom
figure illustrates the error waveforms within the steady state. In (b), the error dynamics in the steady-state is also presented for the reachable case.

TABLE V
DEFINITIONS OF POWER STAGE MATRICES FOR TYPICAL SINGLE SWITCH

DC-DC CONVERTERS

TABLE VI
POSSIBLE SWITCHING STATES FOR A SPC WITH TWO SWITCHING FUNCTIONS

sequences are possible. Thus, for a SPC with switching func-
tions and operating in CCM, is given by

(B2)

If the SPC operates in the DCM, the total number of switching
states increase from to , because each
switching function has an additional state corresponding to

, which represents DCM. For a SPC with switching
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TABLE VII
COMBINATIONS OF SWITCHING SEQUENCES THAT ARE POSSIBLE FOR SUCH SPCs

function and operating in DCM, the total number of feasible
combinations is given by

(B3)
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