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Abstract—In this paper, we demonstrate the feasibility of con-
trolling the speed of an induction motor using a wireless position
feedback over an RF link, and compare its performance under
dynamic- and steady-state conditions with those obtained by using
a wire-based position feedback control. The wireless scheme pre-
cludes the need for the cable that feeds the position from the sensor
to the controller, thereby minimizing feedback noise pickup and
cost for some applications. It also raises the possibility of using a
low-resolution, low-cost sensor, which, along with the use of sim-
ple estimation algorithms, may potentially provide an alternative
to or backup support for conventional position sensorless control
for a wide range of motors and speeds. Further, using a compos-
ite Lyapunov-function-based approach, we determine the effect of
time delay (due to wireless communication) on the stability of the
overall system.

Index Terms—Composite Lyapunov function, induction motor,
linear matrix inequality, piecewise nonlinear system, position feed-
back, speed control, wireless network control.

I. INTRODUCTION

S PEED control of an induction motor usually requires posi-
tion feedback information [as illustrated in Fig. 1(a)] from

an encoder, a resolver, or a Hall sensor to a controller unit [1].
These feedback signals, which often pickup noise due to electro-
magnetic interference, can affect the performance of the motor
control system. As such, the feedback cable is shielded and the
signals are provided in differential form, which increases the
sensing cost. Therefore, motor-drive manufacturers have been
focusing on position sensorless control [2], [3] [as illustrated in
Fig. 1(b)]. However, universal applicability of the position sen-
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Fig. 1. Illustration of motor-control system (with internal control reference)
with: (a) wire-based position feedback, (b) position estimation, and (c) wireless
position feedback. PS stands for position sensor.

sorless algorithms for speed control, especially at or near-zero
speed and at full-load torque, has not been fully achieved yet.

In this paper, we outline a technique [as illustrated in Fig. 1(c)]
for implementing a Volts/Hertz (V/F) (i.e., constant flux) induc-
tion motor control [1], [4] using real-time wireless feedback
of rotor position over an RF transmission link. Today, several
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Fig. 2. (a) Block diagram of the overall system. (b) Wireless transmission scheme for position feedback along with key waveforms at points marked “1”–“4”
and illustration of the end-to-end time delay (τd ).

commercial and defense applications have addressed health
monitoring and RF identification (RFID) of motors using a
wireless link [5]–[7]. The proposed scheme can use the same RF
channel (via hopping) to transmit the position feedback (typi-
cally over a 300-ft transmission range). This eliminates the need
for a multiwire cable, which can be expensive, especially for
harsh and extended operating conditions, and much costlier than
a miniaturized RF transmitter. The proposed wireless position-
sensing scheme can also be extended to other vector control
schemes for induction and other motors.

Conventional position sensorless control schemes require
complex estimation algorithms, and have limitations regard-
ing the speed range and applicability. However, such schemes
save the cost of an expensive position sensor. So, if a low-cost,
low-resolution position sensor is used that transmits informa-
tion over an RF link (thereby precluding the cable cost), then a
simple position-estimation algorithm [2] operating along with
the lower resolution but discrete-time-interval position updates
can be potentially as powerful as the complex position sensor-
less control (which has no position feedback). Because the cost
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of the high-resolution sensor is higher to begin with, the pro-
posed wireless information-exchange-based scheme, which can
potentially use cheaper low-resolution sensors, can be a more
cost-effective approach. However, because wireless transmis-
sion over an RF link is susceptible to channel disruptions [8],
[9], it is important to investigate the impact of time delay on
the stability and performance of the overall system, so that con-
trollers can be designed to ensure operation within the desired
bounds.

II. SYSTEM DESCRIPTION

Fig. 2(a) illustrates a schematic of the overall system con-
sisting of an induction motor, a pulsewidth-modulated in-
verter, and a V/F feedback controller [4] that receives the
motor position feedback over a wireless channel. We use
frequency-shift-keying (FSK) [10] for RF transmission. As
shown in Fig. 2(b), the square-wave output of the position
encoder is first multiplexed and then fed to an RF transmit-
ter. The RF receiver antenna is tuned to a transmission fre-
quency of 900 MHz. The receiver demodulates and ampli-
fies the broadcast signal, such that the output of the receiver
matches the pattern of the original encoded digital signal. Fi-
nally, the demodulated signal is fed to the motor controller.
In the absence of channel disruptions, the (position-sensor-to-
controller or end-to-end) time delay (τd ) is negligible, but it
increases with deteriorating channel conditions or for reduced
data rates. The RF receiver of the controller demodulates the
received signal to extract the digitally encoded position feed-
back (θop ). It is then transformed to a continuous domain us-
ing θ = f(θop) = θ(0) + MODULO(θop , Nenc)(1/Nenc)360◦,
where Nenc (=1024 for our case) represents the angular reso-
lution of the encoder. The position feedback (θ) is fed to the
controller that derives the velocity using ω = dθ/dt, which is
then compared with the velocity reference (ω∗). The error be-
tween ω∗ and ω is fed to a proportional–integral (PI) controller
to obtain the slip, which is then added to ω to obtain the drive
frequency (ωCF ). Subsequently, using ωCF , a desired voltage-
reference magnitude (VCF ) is generated to maintain a V/F op-
eration [1] of the induction motor. Voltage reference VCF and
its instantaneous electrical position (i.e., θe = pθ/2, where p
represents the number of motor poles) are fed to a space-vector
modulation (SVM) block to obtain the switching signals of the
inverter.

III. TIME DELAY STABILITY BOUND USING A PIECEWISE

NONLINEAR MODEL

To apply the composite Lyapunov-function-based methodol-
ogy (outlined later) for ascertaining the impact of end-to-end
time delay on the stability of the overall system (comprising the
induction motor [11], the three-phase inverter [12], and the linear
compensator for V/F control), we represent (following [13]) the
system model in a dq (synchronous frame) frame as a weighted
sum of piecewise linear models:

ė =
r∑

j=0

wj (e) (A0j le + A1j le (t − τd) + Bjl) (1)

TABLE I
DEFINITION OF THE SYMBOLS FOR THE MOTOR MODEL

where r = 4, l represents the switching states of the in-
verter and e = [eid

eiq
evd

evq
eis d

eis q
eir d

eir q
eω eξ1 ]

T .
The states of the overall system are defined in Table I. Func-
tions w0(e) = 1, w1(e) = (ω∗ − eω ), w2(e) = (ω∗ − eω )−1 ,
w3(e) = (i∗rd − ird), and w4(e) = (i∗sd − isd), while the ma-
trices A0j l(e), A1j l , and Bjl are defined in Table II.

Next, using (1), we investigate the stability of the overall
system using a composite Lyapunov-function-based approach
[14]. For the jth subsystem, we define a composite Lyapunov
function Vkj (e) > 0, i.e.,

Vkj (e) =
h∑

l=1

αkjle
T Pkjle

(
k = 1, 2, . . . ,M ;

h∑
l=1

αkjl = 1;

and 0 ≤ αkjl ≤ 1
)

(2)

where Pkjl is a positive-definite matrix, k represents a particular
switching sequence, and h represents the number of switching
states in a given switching sequence. The overall system de-
scribed by (1) is stable provided V̇kj (e) < 0, which is ensured
provided the following matrix inequality is satisfied [14] for any
γ > 0, p > 1:

h∑
l=1

αkjl

×




Gkjl PkjlA1j lA0j l −PkjlA
2
1j l PkjlBjl

−AT
0j lA

T
1j lPkjl −γpPkjl 0 0

−
(
A2

1j l

)T
Pkjl 0 −γPkjl 0

B̄T
j lPkj 0 0 0




< 0

(3)

where Gkjl = 1
τd

[(A0j l + A1j l)T Pkjl + Pkjl(A0j l + A1j l)] +
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TABLE II
DEFINITION OF THE MATRICES IN (1)

Fig. 3. Experimental setup.

(γp + γ)Pkjl . By varying τd in (3), we determine the stable and
unstable regions of operation of the overall system.

IV. RESULTS

Fig. 3 shows the experimental setup consisting of the induc-
tion motor fed by a DMC1500 inverter (developed by Spectrum
Digital, Inc.) with a dc motor that serves as the load. The control

inputs to this inverter are provided by the TMS320LF2407EVM
DSP board (also available from Spectrum Digital, Inc.),
which implements the V/F speed controller that is outlined in
Section II. The induction motor parameters are as follows: three-
phase, 230 V, 4-pole (p = 4), 60 Hz, 1 HP, Rr = 9.91 Ω,
Rs = 6.62 Ω, Ls = 24.2764 mH, Lr = 19.5787 mH, Lm =
750.62778 mH, and J = 0.142 kg·m2 . The parameters for the
three-phase inverter and line filter are as follows: Vin = 400 V, fs

(switching frequency) = 10 kHz, Lf = 1.5 mH, Cf = 0.1 µH,
rLf = 10 mΩ, and rCf = 0.5 mΩ. For wireless position sensing,
a low-cost LINX TXM-916-ES transceiver is used with a baud
rate of 56 Kb/s and transmission frequency of 916 MHz.

To evaluate the efficacy of the wireless position feedback
scheme, we compare its performance with a wire-based scheme.
Fig. 4 illustrates that the percentage error in speed, expressed

as 1
Tw

√∫ Tw

0 ( eω

ω ∗ )2dt × 100 (where eω = ω∗ − ω and Tw repre-
sents the time window for calculation), versus the motor speed
(ω) using wire-based and wireless position-sensing schemes
(with channel separations of 0.2 and ≈7 ft for the later) are
consistent.

We note that the digital word corresponding to ω = dθ/dt
(in the DSP controller) is obtained by following the indus-
trial practice of taking the difference between two successive
samples of θ, since the sampling interval is fixed using a timer.



MAZUMDER et al.: ROTOR POSITION FEEDBACK OVER AN RF LINK FOR MOTOR SPEED CONTROL 911

Fig. 4. Percentage error in speed versus ω for wire-based and wireless feed-
back control systems. For the latter, the measurements are obtained for channel
separations of 0.2 and ≈7 ft, and the measured value of τd is found to be less
than 100 µs. The delay is measured by plotting the transmitted and received
position signals on the same oscilloscope, as illustrated in Fig. 2.

The consistency in the performance of the wire-based and wire-
less position-sensing schemes can be explained by observing
that the experimental averaged SVM output (top) and motor-
phase-current (bottom) waveforms shown in Fig. 5(a) and (b)
are similar. For this result, the motor speed is set at 500 r/min,
while τd < 100 µs. Interestingly, and as shown in Fig. 5(c),
the noise content of the position feedback signals (pulses) in
the case of the wire-based position feedback is higher than that
obtained using the wireless position sensing.

Next, we evaluate the transient performance of the wire-based
and wireless position-sensing schemes. Fig. 6 illustrates the
transient response when the motor speed changes from 300 to
500 r/min and back to 200 r/min. Fig. 6 illustrates that the
dynamic performance of the motor for both mechanisms of
position sensing are close, thus illustrating the feasibility of the
wireless-position-feedback-based speed control.

So far, we have considered cases where the communication
network operates in its nominal operating condition, i.e., where
the time delay (τd ) is negligible. However, the communication
channel can be subjected to disruptions, which can be artificial
(for instance, due to channel jamming by a rogue node) or due
to deteriorating environmental conditions. For such cases, the
time delay due to the wireless communication channel could
increase. Therefore, it is important to determine the impacts of
time delay on the global stability and performance of the system.
Fig. 7(a) illustrates the variation of the maximum stable value of
time delay (τd max ) with motor speed, which is obtained using
the composite Lyapunov-function-based technique described in
Section III. We observe that τd max reduces with increasing mo-
tor speed, which has implications on the upper limit on operating
speed for a given time delay. Next, using parametric simulations,
we evaluate the performance of the system (operating within the
stability boundary) for varying τd and ω, and compare it with a
wire-based approach (which corresponds to τd = 0). Fig. 7(b)
shows the relation among the percentage error in speed, ω, and
τd . We observe that, even for a large end-to-end time delay, the
speed regulation over a wide range of motor speeds is fairly
good and consistent.

Fig. 5. Averaged SVM output and phase current of the induction motor using:
(a) wireless and (b) wire-based position feedbacks. (c) Noise pickup in position-
feedback signals for wire-based and wireless control schemes. The motor speed
is regulated at 500 r/min.

Fig. 6. Dynamic responses of the motor using: (a) wire-based and (b) wireless
position-feedback control. Time delay (τd ) in this case is measured to be less
than 100 µs.
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Fig. 7. (a) Stability boundary obtained by determining the maximum value
of τd for a given speed at which the system is unstable. (b) Percentage error in
speed versus the motor speed and end-to-end time delay (τd ). Time delay τd = 0
corresponds to the wire-based feedback control scheme, while the remaining
time delays could occur in the wireless feedback control scheme, depending on
the channel condition and data rate.

V. SUMMARY AND CONCLUSION

We demonstrate the feasibility of an induction motor speed
control scheme using wireless position feedback, and compare
its performance with those obtained by using a wire-based posi-
tion feedback. Although the wireless sensing scheme precludes
the need for a multiwire physical connection (thereby saving

cost), the performance of the motor using this scheme is very
close to that obtained by using wire-based position feedback.
Although the wireless scheme is applicable up to zero speed, in
this paper, the lower speed limit of 20 r/min (∼0.3333 Hz) was
used because of the lower bandwidth limitation of the analog
RF transmitter. Our recent work in [15] with complete digital
implementation overcomes this limitation.

Under good channel conditions and within the bandwidth of
the RF transceiver, the noise pickup of the feedback position
signal (within the RF transmission range) is found to be lower
for the wireless-sensing scheme, which also exhibits little sen-
sitivity to the channel separation between the transmitter and
receiver units. Thus, although channel disruption in the wireless
scheme causes data loss (and delay), successfully transmitted
data pick up less noise than data transmitted using wire-based
feedback. This is because in the wireless scheme, there is no
involvement of cable for data transmission.

For the same channel conditions, RF transmission incurs a
small position-sensor-to-controller time delay (τd ), but it has
no tangible effect on motor performance. However, when τd

increases (e.g., due to deteriorating channel conditions or a re-
duced data rate), the time delay stability bound of the system
reduces with increasing motor speed. This has implications on
how slow the nominal data rate can be and the upper limit on
operating speed for a given τd . However, our parametric simu-
lations illustrating the functional relationship among speed reg-
ulation, motor speed, and τd show that the overall performance
of the motor control system using wireless position sensing is
reasonably good even under a significant time delay and over a
wide range of operating speeds.
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