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Robust Control of Parallel DC–DC Buck Converters
by Combining Integral-Variable-Structure and

Multiple-Sliding-Surface Control Schemes
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Abstract—We develop a robust controller for parallel dc–dc
buck converters by combining the concepts of integral-vari-
able-structure and multiple-sliding-surface control. The advan-
tages of the scheme are its simplicity in design, good dynamic
response, robustness, ability to nullify the bus-voltage error and
the error between the load currents of the converter modules
under steady-state conditions, and ability to reduce the impact of
very high-frequency dynamics due to parasitics on the closed-loop
system. We describe a method for determining the region of
existence and stability of the sliding manifolds for such parallel
converters. The results show good steady-state and dynamic
responses.

Index Terms—Closed-loop system, integral-variable-structure,
load currents, multiple-sliding-surface control, parallel converters,
.

I. INTRODUCTION

PARALLEL dc–dc converters are widely used in
telecommunication power supplies. They operate under

closed-loop feedback control to regulate the bus voltage and
enable load sharing [1]. [2]. These closed-loop converters are
inherently nonlinear systems. The major sources of nonlinear-
ities are the switching nonlinearity and the interaction among
the converter modules. So far, however, the analyses in this area
of power electronics are based primarily on linearized averaged
(small-signal) models [3]–[13]. When a nonlinear converter
has solutions other than the nominal one, small-signal analyzes
cannot predict the basin of attraction of the nominal solution
and the dynamics of the system after the nominal solution loses
stability [14]–[28]. In addition, small-signal models cannot
predict the dynamics of a switching converter in a saturated
region [25], [26], [28]. Obviously, linear controllers [3], [5],
[7], [8], [10]–[13] designed for such systems cannot always
give robust solutions and optimum performance [29]–[31].
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One way to extract the best performance out of a parallel-con-
verter system is to study its dynamics based on bifurcation anal-
ysis [32]–[35]. In this approach, the stable and unstable dy-
namics of the system are studied as a parameter is varied. Since
almost all of the converters are nonlinear and nonautonomous,
we resort to nonlinear maps [23]–[28]. Based on the movement
of the Floquet multipliers associated with these maps, the bifur-
cations are categorized as static or dynamic. The advantage of
this approach is that, if the dynamics of the systems beyond the
linear region are known, one can optimize the performance of
the converter. The implementation of this approach is discussed
in [27], [28].

Another approach, which is the topic of discussion here,
is based on the design of a robust nonlinear controller that
achieves global or semiglobal stability [35]–[37] of the nom-
inal orbit in the operating region of the parallel converter.
Recently, there have been many studies of the nonlinear
control of standalone dc–dc converters [38]–[47], which have
focussed on variable-structure controllers (VSC) [48], [49],
Lyapunov-based controllers [50]–[54], feedback linearized and
nonlinear controllers [35]–[37], [55]–[57], and fuzzy logic
controllers [58]–[60]. However, there are few studies on the
nonlinear control of parallel dc–dc converters where, unlike the
standalone converters, there is a strong interaction among the
converter modules apart from the feedforward and feedback
disturbances.

In [30], a fuzzy-logic compensator is proposed for the
master-slave control of a parallel dc–dc converter. The con-
troller uses a proportional-integral-derivative (PID) expert to
derive the fuzzy inference rules; it shows improved robustness
as compared to linear controllers. However, the control design
is purely heuristic and the stability of the overall system has
not been proven. In [31], a VSC has been developed for a buck
converter using interleaving. However, the interleaving scheme
works only for three parallel modules. Besides, this paper does
not give any details regarding the existence and stability of the
sliding manifolds.

In this paper, we develop integral-variable-structure control
(IVSC) schemes for parallel dc–dc buck converters. The
choice of a VSC is logical for power converters because the
control and plant are both discontinuous. All of the nonlinear
controllers mentioned earlier [42]–[47], which are not based
on VSC, have completely relied on smooth averaged models of
the power converters. Therefore, the control is valid only on a
reduced-order manifold [23]–[28].
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Fig. 1. Parallel dc–dc buck converter.

The IVSC retains all of the properties of a VSC; that is, sim-
plicity in design, good dynamic response, and robustness. In ad-
dition, the integral action of the IVSC eliminates the bus-voltage
error and the error between the load currents of the converter
modules under steady-state conditions, and it reduces the im-
pact of very high-frequency dynamics due to parasitics on the
closed-loop system. Finally, when the error trajectories are in-
side the boundary layer, by modifying the control using the con-
cepts of multiple-sliding-surface control (MSSC) [61], [62] or
the block-control principle [63], [64], we are able to reject mis-
matched disturbances [53], [54], [65], [66] and keep the steady-
state switching frequency constant. We validate our theoretical
results with some relevant simulation results. We demonstrate
the performance of converter modules under steady-state and
transient conditions and when their parameters do not match.

II. M ODEL OFPARALLEL DC–DC BUCK CONVERTER

Assuming ideal switches, the dynamics ofbuck converters
(shown in Fig. 1) operating in parallel are governed by the fol-
lowing differential equations:

(1)

where the are the switching functions andrepresents the
input voltage. The constraints on the converter model are

(2)

where is the load current.

III. CONCEPTS OFDISCONTINUOUSSYSTEMS

The condition for the existence of theth discontinuity sur-
face of a differential equation

(3)

with discontinuous right-hand side in the neighborhood of
is [67]

and or (4)

If the discontinuity surface exists globally, then all of the so-
lutions of (3) in the continuity region reach it and stay on it.
For the continuity region, the definition of solution is clear [67].
However, the definition of a solution (almost everywhere) as an
absolutely continuous function satisfying (4) is not always ap-
plicable for equations whose right-hand sides are discontinuous
on an arbitrary smooth surface. Using the Lebesgue measure,
one can apply the definition to the case in which the solutions
approach the discontinuity surface on one side and leave it on the
other side. When the solutions approach a discontinuity surface
on both sides, the conventional definition is unsuitable because
there is no indication of how a solution that has reached the dis-
continuity surface may continue.

Filippov [67] defined a solution for the vector differential
equation

(5)

with discontinuous feedback , where
is measurable and essentially locally bounded. A vector function

, defined on the interval , is a Filippov solution of (5)
if it is absolutely continuous and, for almost all and
for arbitrary , the vector belongs to the smallest
convex closed set of an-dimensional space containing all of
the values of the vector function ; where ranges over
the entire neighborhood of the point in the space (with

fixed) except for a set of measure ; that is

(6)

where is called Filippov’s differential inclusion and is
defined as

(7)

In (7), denotes the convex hull of a set,is the Lebesgue
measure, and is a ball of radius centered at . The content
of Filippov’s solution is that the tangent vector to a solution
at a time , where it exists, must lie in the convex closure of
the limiting values of the vector field in progressively smaller
neighborhoods around the solution evaluated at time.
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Fig. 2. Description of Filippov’s solution (often called sliding motion) on a
discontinuity surfaceS.

Let us consider a smooth surface(shown in Fig. 2), given
by , on which the function is discontinuous.
The surface separates its neighborhood in thespace into the
domains and . Suppose that is bounded and, for
any fixed , its limiting values and exist when

is approached from and . Let and be
the projections of and on the normal to the
surface directed toward and . Then, for an absolutely
continuous satisfying , and

, the trajectories pointing toward are
solutions of (5) according to the differential inclusion (6) if and
only if

(8)

where

(9)

We note that the right-hand side of (8) is orthogonal to and
hence the solution remains on the surface.

The sliding mode in a real-life system actually occurs not on
its discontinuity surface, but within a boundary layer on which
the control components may take up values different from
and [48], [49]. The vector in (3) may, therefore,
take up values which differ from those obtained with
and . This results in a wider convex set in the Filippov
continuation method and, consequently, in a richer set of mo-
tions on the sliding mode. In order to handle the regularization
problem and find feasible solutions to (3), Utkin [48] proposed
an equivalent control method.

Assume that a sliding mode exits on the manifold

(10)

which lies at the intersection of discontinuity surfaces. Then,
we can find a continuous control such that, under the initial po-
sition of the state vector on this manifold, the time derivative of
the vector along the trajectories of system (3) is identically
zero; that is

(11)

In (11), is referred to as the
equivalent control for the vector equation (3) on the sliding sur-

face (10). Therefore, the dynamics of (3) on the sliding surface
are governed by

(12)

Thus a solution is an absolutely continuous vector-valued func-
tion, which outside the surfacessatisfies (3) and on these sur-
faces and on their intersections satisfies (12) for almost all.

For a system which is linear with respect to control, when
the width of the boundary layer is zero, the solutions obtained
using the equivalent control method and Filippov’s method are
the same. The stability of the solutions of either (8) or (12) is de-
termined using linear techniques if the sliding manifold is linear.
If, however, the sliding manifold is nonlinear, then Lyapunov’s
first and second methods [35], [68], [69] and bifurcation anal-
ysis [32]–[35] are suitable approaches.

IV. CONTROL SCHEME

The control scheme for the converter has two modes of oper-
ation: one when the error trajectories are outside the boundary
layer and the other when they are inside the boundary layer.
The boundary layer, which is time-varying, is formed by a ramp
signal with a frequency . The limits of this boundary
layer correspond to the maximum and minimum values of the
ramp. At the beginning of each switching cycle, we determine
whether the error trajectories are within the limits of the
time-varying ramp and hence determine the mode of operation.

A. Control Outside the Boundary Layer

To achieve the control objectives, we use smooth hypersur-
faces (sliding surfaces) defined by

(13)

where the , and are the controller gains, the
and are the sensor gains for the output voltages

and inductor currents, and the are the reference voltages
for the bus. The term represents
the average of all inductor currents. While the first two terms
in (13) minimize the bus voltage error, the third term enables
equal sharing of power among the converter modules. The last
term enhances the dynamic response of the closed-loop system.

We note that, in a conventional VSC, the integral operators
in (13) are replaced with first-order derivatives. This may not
be desirable for a power converter, which operates at a high
switching frequency [25]. Due to its integral action, the IVSC
minimizes the impact of parasitics due to a high-switching fre-
quency. In addition, unlike a VSC, the IVSC attains steady state
with reduced control effort.

Next, we differentiate (13) to obtain

(14)
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Using (1), we rewrite (14) as

(15)

Equation (15) shows that the sliding surfaces have independent
control. The general form of is

(16)

where and

(17)

We define

(18)

where and represent the equivalent control [48], [49]
and the nonlinear switching control and

if
if

(19)

These two controls must satisfy the following constraints:

and

(20)

Knowing that exists, we equate (16) to zero, solve for ,
and obtain

(21)

Substituting into (18) and using (16) and (4), we obtain the
following existence condition:

(22)

Because , (22) is satisfied provided that

if
if

(23)

and satisfies (20). For example, substituting (17) into (21)
yields

(24)

Knowing that is small, for proper
design, and the fourth term in (24) is less than one (because

), we can make satisfy (20) by properly chosing
, and .

The stability of the dynamics on the sliding manifold for the
parallel buck converter is straightforward because the dynam-
ical equations describing the closed-loop system are in regular
form [48], [49] on this manifold. The dynamical equations on
the reduced-order manifold are given by

(25)

Because on the sliding surface, using (13), we obtain

(26)

Substituting (26) into (25), we obtain a set of linear differential
equations of the following form:

(27)

where , and are linear functions. For a passive load,
the stability of (27) can be determined by the eigenvalues of its
Jacobian. For example, if the load is a resistor ofohm, then

. If has a time-varying perturbation in addition
to its nominal value, then the stability of the solutions of (27)
can be analyzed by using either Floquet theory or the Lyapunov
method [26], or simply by analyzing the state-transition matrix
of (27) [69].

B. Control Inside the Boundary Layer

The derivation of the control laws in the preceding section
assumes ideal sliding surfaces. In reality, the switching fre-
quency is finite, and hence, instead of ideal sliding surfaces
given by (14), we have boundary layers around them. For a
boundary layer of finite width, the control laws derived in the
preceding section only guarantee that the error trajectories will
reach the boundary layer. Within a boundary layer/quasisliding
surface, the dynamics of the system is infinite dimensional due
to the delay [25]–[28]. One way to describe the dynamics of the
converter within the quasisliding surfaces is through a nonlinear
map [23]–[28]. In [70], we describe the digital control design
using such a map for a parallel three-phase boost converter
system. Another way to describe the dynamics within the
quasisliding surfaces is through a state-space averaged model
[23], [25] that follows from Fillipov’s concept of differential
inclusion. We use the latter approach in this paper.

The state-space averaged model for the parallel dc–dc buck
converter is given by [71]

(28)

where is the duty ratio. We make an important observation
at this point. The control based on the averaged model works
only inside the boundary layer. Outside the boundary layer, the
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controller uses the switching model. Therefore, the controller
can guarantee stability even under saturation. Conventional con-
trollers based on small-signal models ignore the impact of satu-
ration and other nonlinearities. For instance, the averaged model
of a parallel-boost converter is nonlinear.

Next, we define the following sliding surfaces:

(29)

where

(30)

(31)

Differentiating , we obtain

(32)

Substituting (28) into (31) yields

(33)

Substituting for from (29) into (32), we obtain

(34)

We let

(35)

where , and are constants, in (33) and obtain

(36)

Next, we choose and
and reduce (35) to

(37)

Equation (37) shows that, when , the dynamics on
are convergent (for or ) provided

that . We assume that and design the
control such that the the rate of convergence of the dynamics on

are much faster than those on .
Next, we differentiate in (29) and set it equal to

(where is a positive constant) to guarantee
convergence of the dynamics on ; the result is

(38)

Next, using the Lyapunov function

(39)

and (37) and (38), we can show that

(40)

is less than zero provided that
.

From (38), we obtain

(41)

Using this duty ratio and a ramp signal (with fixed frequency),
we can operate parallel converters in synchronicty or in-
terleaving. The main difficulty in implementing (41) is calcu-
lating . Green and Hedrick [61] solved this problem approx-
imately by using the first principle of calculus and obtained

(42)

A better approach was proposed by Gerdes [72] and Swaroop
[62] using the concept of a linear filter. With this approach, we
make a minor change in our control derivation. First, we define
an auxiliary variable and then pass it through the linear filter

(43)

to obtain . In (43), is a positive constant, which should be
chosen large enought to reduce the high-frequency component
of , but small enough so as not to alter the low-frequency
component which is, in fact, the equivalent control that we need
[73]. Finally, we substitute for in (35) and obtain

(44)

This solves the control problem inside the limits of the boundary
layer.

The implementation of the overall control scheme described
in this section and in Section IV-B can be analog or digital. At
the beginning of each switching cycle, by determining whether
the are outside or inside the limits of the boundary layer, we
implement the control described in either Section IV-A or in this
section. To avoid the possibility of a border collision [18], [25],
we use comparators with a small hysterisis.

V. RESULTS

We performed several simulations on a parallel-buck con-
verter that has two modules (M1 and M2), the nominal values of
their parameters are shown in Table I. The input voltage varies
between 25–50 V. The output voltage is regulated at 5 V. The ob-
jective of the simulations is to find out the effectiveness of the
sliding-mode control schemes in regulating the bus voltage and
sharing the power delivered to a resistive load under steady-state
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TABLE I
NOMINAL PARAMETERS FORM1 AND M2

and dynamic conditions. The controller parameters are tuned so
that, for the worst disturbances, the conditions of existence of
the sliding modes are satisfied and the dynamics on the sliding
manifold are stable as per (27). Because it is physically impos-
sible to have identical converters and an infinite switching fre-
quency, we demonstrate the transient and steady-state perfor-
mance of the control to variations in the parameters of the two
modules under a finite switching frequency. To obtain a finite
switching frequency inside the boundary layer, we compare the
error signals of each module obtained usingwith ramp sig-
nals having a switching frequency of 100 kHz. For operating the
modules using interleaving, we phase shift the ramp signals of
the two modules by one-half of a switching-cycle period.

Fig. 3 shows the response of the closed-loop converter when
it is subjected to a sudden change in the load resistance from
2.5 to 0.625 , which is the maximum variation in load al-
lowed for the given converter. The input voltage is fixed at its
minimum (i.e., 25 V), and hence M1 and M2 are subjected to
the worst transient load. We consider two cases: one when M1
and M2 are identical and the other when they are different. The
results for case one are shown in Fig. 3(a)–(c). They show that
the drop in the output voltage is less than 1% even though the
load resistance is decreased four-fold. Besides, sharing of the
power delivered to the load is good under steady-state and tran-
sient conditions.

Although the responses of the converter for case one are good,
in real life, due to manufacturing tolerances, it is not possible to
have identical modules. Therefore, the second case considers a
more practical scenario. We fix , and at
their nominal values but change the parameters for M2 so that

,
and . These parametric variations are more than
what one will typically encounter for such converters [74]. The
results in Fig. 3(d)–(f) show that, inspite of the parametric vari-
ations, the transient and steady-state performances of the con-
verter are close to the ideal case.

In the second case, we investigate whether M1 and M2 can
operate with interleaving. A closer examination of the inductor

(a) (d)

(b) (e)

(c) (f)

Fig. 3. Dynamic and steady-state performance of a parallel-buck converter
when the parameters of the two modules are the same (a)–(c) and when they
are different (d)–(f). The converter is initially in steady state and then subjected
to a sudden change in the load resistance.

Fig. 4. Waveforms of the inductor currentsi and i are phase-shifted
by half the switching-cycle period. Thus, the new variable-structure controller
ensures interleaved/phase-shifted operation during (a) transient and (b)
steady-state conditions and keeps the switching frequency constant.

currents in Fig. 4(a)–(b) under steady-state and transient condi-
tions show that indeed they operate with a phase shift of one-half
of the switching-cycle period. The ripple of the current is
larger than that of because the magnitude of is smaller
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(a)

(b)

Fig. 5. Impact of variations in the controller gainsG andG on the (a)
output voltages and (b) the inductor currents of M1 and M2.

than that of . The interleaved operation of the converter is
possible because, inside the boundary layer, the controllers use
the duty-ratio signals for pulse-width modulation. The latter en-
sures the operation of the converter with a constant switching
frequency. We note that, using a conventional sliding-mode con-
trol, interleaving and constant frequency of operation are not
possible [49].

The choice of the controller gains ,
and is critical to the steady-state and transient responses of
the closed-loop converter. In Figs. 5–7, we show the impact of
variations in these controller gains on the performance of the
converter for the second case. We fix the input voltage at 25
V and change the load resistance from 2.5to 0.625 . We
sampled the inductor currents and the capacitor voltages at the
switching frequency to suppress the ripple from the waveforms
and obtain a clearer comparison. The sampling is done at the be-
ginning of each switching cycle of M1. At this instant and under
steady-state conditions, attains its lowest value. Because M2
operates with a phase shift of one-half of a switching cycle as
compared to M1, the sampled value of will in general be
larger than that of at the sampling instant.

Fig. 5(a) and (b) show the effect of variations in and
on the output voltages and inductor currents. The plots marked

, and are obtained using and
with the remaining parameters being the same

as in case two. The other sets of plots marked , and
, and , and are obtained by reducing

only and by 50% and 75%, respectively. When
and are reduced, the transient response of the system dete-
riorates. This is prominent in the plots marked ,
and of Fig. 5, which show a strong undershoot and an
overshoot.

Next, we show in Fig. 6(a) and (b) the effect of variations in
and . Initially, the values of all of the parameters of M1

and M2 are the same as those in case two. The waveforms for

(a)

(b)

Fig. 6. Effect of variations in the controller gainsG andG on the (a)
output voltages and (b) the inductor currents of the parallel converter.

(a)

(b)

Fig. 7. Impact of variations in the controller gainsG andG on the (a)
output voltages and (b) the inductor currents of the converter modules.

this case are marked , and . Then, we reduce
and by 50% and 75%. The results for these three cases

are denoted by , and , and ,
and , respectively. The results show that, as and
are reduced, the capacitor voltage takes much longer to attain a
steady state immediately after a transient. On the other hand,
increasing and too much results in an overshoot of
the inductor currents. The trade-off in the gains depends on the
application of the power supply.

Similarly, by swapping for and for , we
obtain Fig. 7(a) and (b), which show the impact of these con-
troller gains on the load sharing. The corresponding plots are
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(a) (d)

(b) (e)

(c) (f)

Fig. 8. Transient and steady-state performance of a parallel-buck converter
when the parameters of the two modules are the same (a)–(c) and when they are
different (d)–(f). The converter is initially in steady state and then subjected to
a sudden change in the input voltage.

marked , and , and ,
and , and , respectively. First, we observe
that the effect of the variations in and on the output
voltage is negligible. Second, with a reduction in the gains, the
load sharing deteriorates immediately after the transient condi-
tion. Hence, and must be chosen carefully; otherwise
an uneven distribution of power among the converter modules
occurs.

Finally, we demonstrate the responses of the parallel con-
verter when the input voltage changes from 50 V to 25 V. This
variation in the input voltage is the maximum allowed by the de-
sign specifications. The load resistance is fixed at its minimum
(i.e., 0.625 ), and hence M1 and M2 are subjected to the worst
transient input voltage. We again consider the same two cases
used to obtain Fig. 3(a)–(f). Fig. 8(a)–(c) and (d)–(f) show the
results for cases one and two, respectively. They show that the
drop in the output voltage is less than 1%. In addition, inter-
leaving between the two converter modules, for the ideal and
realistic cases, is maintained under static and dynamic condi-
tions. It is obvious that, even under a severe feedforward distur-
bance, the performance of the converter is good.

VI. CONCLUSION

We describe a robust control scheme for parallel dc–dc
buck converters and determine the region of existence of
the sliding surfaces and the stability of the reduced-order
dynamical system on the sliding manifold. The control scheme
combines the concepts of integral-variable-structure- and
multiple-sliding-surface control and has several advantages.

1) First, it is easy to design because each sliding surface
is independently controlled. As such, the operation of a
parallel converter with modules is not hampered even
if a module fails.

2) Second, the controller yields good transient responses
even under parametric variations.

3) Third, the controller eliminates the bus-voltage error and
the error between the line currents of the converter mod-
ules under steady-state conditions. This is achieved with
a reduced control effort due to the integral action of the
controller.

4) Fourth, the integrators in the control scheme can reduce
the impact of very high-frequency dynamics due to para-
sitics on an experimental closed-loop system.

5) Fifth, the control scheme within the boundary layer en-
ables operation of the converter with a finite switching
frequency.

6) Sixth, the converter modules can be operated in inter-
leaving or synchronicity modes.

7) Finally, the control scheme can also be applied to non-
minimum-phase converters.

In a follow up paper, we will publish the results on the perfor-
mance of a parallel-boost converter, which uses such a control
scheme.
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