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Abstract—A framework that jointly optimizes the control and
communication networks of network-controlled interactive power
electronics networks is described in this paper. The joint optimiza-
tion framework includes two coupled blocks, one whose focus is
to ensure optimal performance of the power network within its
stability bounds and the other whose thrust is on optimizing the in-
formation flow in a communication network. These two networks
have contrasting requirements because, on the one hand, time de-
lays are detrimental to the stability and performance of the control
system, while on the other hand, allowing higher time delays leads
to efficient utilization of the communication network’s resources.
The proposed framework leads to an optimal compromise be-
tween these two noncooperative networks. Three different imple-
mentation approaches for the integrated control–communication
framework are investigated, namely, centralized, distributed, and
clustered. A case illustration of a homogeneous power network
is provided to demonstrate the efficacy of the joint control–
communication framework and compare the performance of the
three implementation approaches.

Index Terms—Interactive power electronic networks (IPNs),
joint optimization, Lyapunov stability, network control systems,
network resource utilization.

I. INTRODUCTION

N EXT-GENERATION power systems applications, such as
distributed generation, active power filters, and flexible ac

transmission systems for grid power-flow control, all-electric
ships, and aircraft are expected to rely heavily on interactive
power electronic networks (IPNs) [1]–[4]. In addition, because
of their high reliability, reduced harmonic distortion, and better
dynamic performance, IPNs are also used for applications, such
as uninterruptible power supplies [5] and dc distributed power
systems for telecommunication applications [6], among others.

Because of intermodule interactions, the control design of
IPNs is more involved than that for stand-alone converters.

Manuscript received August 15, 2008; revised October 24, 2008. First
published January 19, 2009; current version published April 29, 2009. This
work was supported in part by the National Science Foundation under CAREER
Award 0239131 and in part by the Office of Naval Research under Young
Investigator Award N000140510594 received by S. K. Mazumder in 2003 and
2005, respectively.

S. K. Mazumder and K. Acharya are with the Laboratory for Energy
and Switching Electronics Systems, Department of Electrical and Com-
puter Engineering, University of Illinois, Chicago, IL 60607 USA (e-mail:
mazumder@ece.uic.edu).

M. Tahir was with the University of Illinois, Chicago, IL 60607 USA. He
is now with the Institute of Microelectronics and Wireless Systems, National
University of Ireland, Maynooth, Ireland.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2009.2012458

An approach for controlling interconnected networks, such as
IPNs, is based on model-predictive control, where the control
inputs over a given time horizon are determined based on the
overall model of the system [7], [8]. The application of such
a control scheme to interconnected power converters, while
guaranteeing the IPN’s global stability, has been demonstrated
[9]. Distributed implementations of model predictive control,
which achieve a compromise between redundancy and control
performance, rely on the coordination of the local controllers
using intermodule information exchange [10]–[13]. A funda-
mental feature of these architectures is the need for a com-
munication infrastructure for information exchange among the
modules in case of distributed implementation and between the
master and the slave modules for centralized implementation.
The communication network introduces time delays. However,
in the aforementioned references, impacts of time delays on the
stability and performance of the system have been ignored.

Although impacts of time delay on the stability and per-
formance of networked control systems have been well re-
searched in the control and systems community [14]–[16], one
key observation from recent research works [17]–[22] is that
the control and the communication networks do not always
operate cooperatively if the communication protocol does not
yield channel interference. For instance, in [18] and [22], the
authors demonstrated that, to increase the stability margin of
the power networks and attain high control performance, fast
information exchange is desired. However, from the point of
view of the communication network, progressively higher data
rates cannot be sustained due to network resource limitations
[23]. This problem is further aggravated as the number of nodes
of the overall network increases because a progressively higher
volume of information flow typically cannot be sustained at
the same data rate without enhancing the probabilities of failed
(end-to-end) transmissions.

To address this issue, a joint control–communication opti-
mization strategy is desired, which ensures an optimal com-
promise between the performance of the control system and
the resource utilization of the wireless communication net-
work under constraints of the power network stability and
communication network capacity bounds. In this paper, such
a joint control–communication optimization strategy for inter-
connected power networks is outlined in Section II, as shown
in Fig. 1. In Section III, a case illustration of a homogeneous
inverter network is used to evaluate the efficacy of the optimiza-
tion strategy.
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Fig. 1. Block diagram of the overall control–communication framework.

II. JOINT CONTROL–COMMUNICATION FRAMEWORK

In this section, the joint control–communication optimization
framework is described. The goal of the optimization problem
is to determine the set of feasible switching sequences [16] and
the time spent in each switching state of the sequence [9] for all
the modules (n), and the transmitter power levels (Pk) and the
transmission rates (r(lnj)) for all the communication links. The
models of the power network and the maximum values that each
state can attain (x(n)

max) constitute the constraints of the control
network.

The communication network is modeled as a directed graph
G(N,L) where N is the set of modules and L is the set of
communication links. Each link lnj ∈ L between a transmitting
module j and a receiving module n has an associated trans-
mission capacity clnj

, actual transmission rate r(lnj), and delay
τ (lnj). The link delay is obtained using the M/M/1 queuing
model [24] and is given by τ (lnj) ≥ μlnj

(clnj
(P) − r(lnj))−1.

For the control system, a positive-definite quadratic cost
function is chosen, while for the communication network,
utility functions for the rate and delay (to account for the com-
munication resource allocation) constitute the cost function.
Constraints for the optimization problem include the system
model, maximum values that each state can attain, and the time-

delay bound to ensure stable operation. Overall, the integrated
control–communication optimization problem can be expressed
as follows:

minimize J =

{∑
n∈N
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x(n)

ref −x(n)
k+1

)′
Z(n)

(
x(n)
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(lnj)
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)
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)}
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j �=n j∈N ∀n (1b)

x(n)
k+1−x(n)
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τ
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k ≤Dmax ∀lnj (1d)(
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where x(n)
k represents the states of the nth module,

x(j)
k (−τ

(lnj)
k ) represents the delayed states of the other mod-

ules, i represents its switching states, x(n)
ref are the references,

Z (> 0) is a positive-definite diagonal weighting matrix, A(n)
0i ,

A(n)
1i , and B(n)

i are switching-state-dependent matrices of ap-
propriate dimensions and are described in [16] and [18], and
fn is a map of the states of the nth module at time instant
(k + 1), given the states of the module at time instant (k) and
the delayed states of the other modules. Also, 1 is the vector
with all its entries equal to unity, and Dmax is the time-delay
bound. In (1f), � represents componentwise inequality.

Next, dual variables ϕn, ψn, ∀n, and λlnj
, πlnj

, ∀lnj , for
the constraint sets (1b), (1c) and (1d), (1e), respectively, are
introduced. Using the dual representation, the Lagrangian for
the optimization problem in (1) is given in (2), as shown at
the bottom of the page. After rearranging the terms in (2), the
problem can be rewritten as (3), shown at the bottom of the next
page. The elements of (3) constitute the distributed control and
communication subproblems.
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(2)
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A. Distributed Control Subproblem

The goal of the control subproblem is to determine the set
of feasible switching sequences [16] and the time spent in each
switching state of the sequence [9] for all the modules, which
minimizes the control cost function

Jcontrol =
∑
n∈N

((
x(n)

ref − x(n)
k+1

)′
Z(n)

(
x(n)

ref − x(n)
k+1

))
.

From (3), the following distributed control subproblem can be
obtained:

minimize∑
n∈N

((
x(n)
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k+1

)′
Z(n)
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ref − x(n)
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s.t. x(n)
k+1 ≥ 0 ∀n. (4)

For the distributed implementation of (4), each module requires
information from other modules of the network because of
the presence of the coupling terms in the control problem of
each module. Contributions of the states x(n)

k (−τ
(lnj)
k ) from

the other modules are assumed to be a lumped disturbance,
which is updated using the information exchange through the
communication network. Each of the distributed subproblems
in (5) can be solved using quadratic programming.

B. Distributed Communication Subproblem

The communication subproblem has three components: rate,
power, and delay optimization problems. Each of these prob-
lems is solved independently as discussed in the following.

1) Rate Allocation Problem:

minimize
∑

lnj∈L

(
λlnj

r
(lnj)
k − Ur

(
r
(lnj)
k

))

s.t. Rmin(lnj) ≤ r
(lnj)
k ∀lnj . (5)

The aforementioned problem is separable and can be solved in
closed form using Karush–Kuhn–Tucker conditions [25]. The
solution for the objective function

Ur

(
r
(lnj)
k

)
= log

(
r
(lnj)
k

)
∀r

(lnj)
k

is given by

r
(lnj)∗
k =

{
Rmin(lnj), if Rmin(lnj) ≥ 1

λlnj(
λlnj

)−1
, otherwise.

(6)

The choice of the optimal rate reduces to the selection of the
minimum rate required or the inverse of the link prices (in the
form of dual variables), depending on whichever is larger.

2) Power Allocation Problem: The power allocation prob-
lem for each link is a coupled and nonconvex geometric pro-
gram and is expressed as

minimize −
∑

lnj∈L

λlnj

(
clnj

(Pk)
)

s.t. 1Pmax � Pk � 0. (7)

By using the “log” transformation and change of variables, the
problem is converted into a convex program [26]. The iterative
link power update is given by (8), as shown at the bottom of
the page, where βP is the step size and γlnj

is the channel gain
from the transmitter of node j to the receiver of node n.
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3) Delay Minimization Problem: The delay minimization
problem given by

minimize
∑

lnj∈L

(
WUτ

(
τ

(lnj)
k

)

+ πlnj

(
τ

(lnj)
k − Dmax

)
+ λlnj

μlnj

τ
(lnj)
k

)
(9)

is decomposable into individual link delay problems. The prob-
lem in (9) is a convex program for Uτ (τ (lnj)

k ) = (τ (lnj)
k )κ,

κ > 1. It should be mentioned here that the decomposability of
the aforementioned problem is due to the availability of direct
communication between the sender and the intended receiver.
The more general case of a multihop network is not decompos-
able due to the presence of linear coupling constraints, and a
gradient projection algorithm can be used.

C. Dual Problem

The dual problem associated with the primal optimization
problem in (1) [27] is given by

maximize g(ψ,ϕ,π,λ)

s.t. ψ,ϕ,π,λ � 0 (10)

where g(ψ,ϕ,π,λ) = L(x∗,u∗,d∗, r∗,P∗,ψ,ϕ,π,λ). The
updates for the dual variables ψ, ϕ, π, and λ are obtained
by evaluating the subgradients of g(ψ,ϕ,π,λ) with respect to
each of the dual variables and are given by (11a)–(11d), shown
at the bottom of the page.

III. CASE ILLUSTRATION: PARALLEL INVERTER NETWORK

In this section, the application of the integrated control–
communication optimization framework to a homogeneous par-
allel inverter network, as shown in Fig. 2, is evaluated. Nominal
parameters of one of the modules are provided in Table I.
The piecewise linear model of each module in the synchro-
nous reference frame, which is used to derive the map (1b),
is described as

ẋ(n) = A(n)
0i x(n) + A(n)

1i x(j)
(
−τ (lnj)

)
+ B(n)

i (12)

Fig. 2. Block diagram of a six-module parallel inverter network with the com-
munication interface and wireless network for exchanging control information.

TABLE I
PARAMETERS OF A SINGLE MODULE OF

THE THREE-PHASE INVERTER NETWORK

where

x(n) =
[
i
(n)
d i

(n)
q i

(n)
z v

(n)
d v

(n)
q v

(n)
z

]T
represents the states of the nth inverter module in the synchro-
nous reference frame and A(n)

0i , A(n)
1i , and B(n)

i are switching-
state-dependent matrices of appropriate dimensions. Detailed
descriptions of these matrices are given in [16] and [18]. For
the results provided in this section, n = 1 − 6. The map (1b)

ϕn(k + 1) = max
{

0, ϕn + βϕ

(
fn

(
A(n)

0i ,A(n)
1i ,B(n)

i ,x(n)
k ,x(j)

k

(
−τ

(lnj)
k

))
− x(n)

k+1

)}
∀n (11a)

ψn(k + 1) = max
{

0, ψn + βψ
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k+1 − x(n)
max

)}
∀n (11b)

λlnj
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can be derived by patching together the solutions of (12) for all
the switching states (i).

Control objectives of the parallel inverter include voltage
regulation and load sharing among the inverter modules. The
reference vector for the nth inverter module is given by
x(n)

ref = 
Iref
d Iref

q Iref
z V ref

d V ref
q V ref

z �. Here, symbol
V ref

d is the d-axis reference voltage, Iref
d = (1/N)

∑N
n=1 i

(n)
d

and Iref
q = (1/N)

∑N
n=1 i

(n)
q are the averaged d- and q-axis

currents of N inverter modules, and Iref
z , V ref

q , and V ref
z are

all equal to zero. The current reference for each module is de-
termined using information exchange among all of the inverter
modules. The weighting function Z(n) for the nth module is a
6 × 6 diagonal matrix, whose diagonal elements are z

(n)
1 = 10,

z
(n)
2 = 10, z(n)

4 = 5, and z
(n)
3 = z

(n)
5 = z

(n)
6 = 0. Variations of

the weights on the performance of the parallel inverter will be
investigated later in Section III-A.

In this section, three scenarios are investigated, as shown in
Fig. 3. The transmission schedules for these three cases (corre-
sponding to N = 6) are shown in Fig. 4. Fig. 3(a) shows a cen-
tralized scheme, where a master module receives state-feedback
information from all the modules of the network, computes
the optimal switching sequences, and transmits them to each
module. Because information exchange with the master module
takes place via broadcast-based time-division multiple access,
as shown in Fig. 4(a), this scheme is referred to as centralized-
broadcast TDMA (CBTDMA). Here, M denotes the master
module. On the other hand, Fig. 3(b) shows a distributed
control scheme, where all of the modules exchange informa-
tion with each other via broadcast-based TDMA, as shown in
Fig. 4(b). This scheme is referred to as the distributed-broadcast
TDMA (DBTDMA). Finally, Fig. 3(c) shows a case where
the distributed control is implemented over a network, where
many-to-many communication can take place. Fig. 4(c) shows
a spatial TDMA-based transmission schedule [28], [29] for
information exchange among the modules. Here, the channels
marked with the same colors can communicate simultane-
ously and therefore interfere with each other’s communica-
tion. Averaged information of the states (represented as 〈·〉
in Fig. 4) is exchanged across the clusters. This scheme is
referred to as distributed spatial TDMA (DSTDMA) in the rest
of this paper. Note that, in Fig. 4, the additional time required
to synchronize the modules for the DSTDMA case has not
been shown.

First, in Section III-A, using simulation results, the need
for an integrated control–communication strategy is established
for the DSTDMA case. Subsequently, in Section III-B, experi-
mental results demonstrating the application of the integrated
control–communication optimization scheme are presented
and compared with the performances for the CBTDMA and
DBTDMA cases.

A. Simulation Results

Fig. 5 shows the variations of the load-sharing error and
the network throughput with variations of the number of mod-
ules for the case of DSTDMA. Note that these results are
obtained using dynamic simulations in the SimPowerSystems

Fig. 3. Schematics illustrating the connectivity of the communication net-
works (for N = 6) under investigation. (a) CBTDMA. (b) DBTDMA.
(c) Distributed many-to-many spatial TDMA [29] schemes. Note that the links
marked with the same colors can communicate simultaneously.

Version 4.0 toolbox of Simulink. Fig. 5 shows that the control
system performance deteriorates with an increase in the number
of modules for the three cases shown in Figs. 3 and 4. In
this figure, the load-sharing error is calculated with respect
to the overall load. The increase in the load-sharing error can
be attributed to the parametric differences among the modules
and increase in the time delay to sustain more communication
overhead. However, for the DSTDMA case [Fig. 5(c)], the
effective throughput of the communication network increases
with an increase in the number of modules, which means that
the network operates closer to its capacity. Note that, here, the
network throughput is defined as the sum of the rates that can
be sustained by each communication session and is given by∑

lnj
r
(lnj)∗
k . An increased network throughput might be desir-

able for applications where network size scalability is required.
Because the two problems are noncooperative, the results
illustrate the need for an integrated control–communication
optimization scheme.
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Fig. 4. Comparison of the transmission schedules (for N = 6) of (a) CBTDMA, (b) DBTDMA [Fig. 3(a)], and (c) distributed many-to-many spatial TDMA
[Fig. 3(b)] schemes.

Furthermore, Fig. 6 shows the variations of the load-sharing
error and convergence times with variations of one of the
parameters of the weighting function Z(n). The values of the
other parameters are as follows:

z
(n)
2 = 10 z

(n)
4 = 5 z

(n)
3 = z

(n)
5 = z

(n)
6 = 0.

While increasing z
(n)
1 results in improved convergence times,

the normalized overshoot increases. However, note here that,
because of constraint (1c) in the control scheme, this over-
shoot does not increase beyond the maximum ratings of the
components. These results illustrate that a tradeoff study would
be helpful to determine the different weights. Similar tradeoff
studies were performed to select the other values of the weight-
ing function as well.

Next, the variation of the communication-network resource
utilization for different values of the delay weighting factor W
is evaluated. Fig. 7 shows that, for small values of the weighting
factor W , the end-to-end delay and Dmax (the maximum end-
to-end delay threshold) are close. As W increases, higher delay
margins are obtained at smaller values of Dmax, as shown in
Fig. 8. The optimal end-to-end-delay performance in Fig. 7
also shows that, for a Dmax higher than a specific value (e.g.,
0.005 s for W = 100), a further increase in Dmax does not
increase the network throughput. The desired network through-
put performance can be obtained by adjusting the weight
factor W .

B. Experimental Results

Next, using experimental results, the performance of the
parallel inverter network with the three schemes shown in
Fig. 3 is evaluated. The experimental setup for evaluating the
performance of the parallel inverter network is shown in Fig. 9.

A digital control platform is used, which contains a DSP (TI
TMS320C6713) and a field-programmable gate array (Altera
Flex10K Series). The set of feasible switching sequences [16]
is computed offline and is used subsequently for solving the
distributed control subproblem described in Section II-A. A
MicroLinear ML 2722 1.5-Mb/s transceiver that operates in
the unlicensed 900-MHz industrial, scientific, and medical fre-
quency band is used and allows half-duplex communication.
The algorithm for the communication network subproblem is
solved beforehand using some dummy data packets.

Fig. 10 shows a small degradation in the performance of
the power network for the DSTDMA case compared to the
DBTDMA case. This can be attributed to higher time delays
because of interference among the channels during simultane-
ous communications. The results follow the simulation results
presented in Section III-A. Because the network throughput
for the interference-limited case is significantly higher than
for the broadcast-based communication case (Fig. 5), the inte-
grated control–communication scheme might be more suitable
from the point-of-view of network scalability. The significant
increase in the convergence times for the CBTDMA case can
be attributed to the increased computation times, as shown
in Fig. 11. Note that, for these results, the centralized in-
tegrated control–communication optimization problem is im-
plemented on the same platform as the distributed case. If a
computationally more powerful processor is used, the perfor-
mance obtained with the centralized architecture is expected to
improve.

IV. SUMMARY AND CONCLUSION

In this paper, it is demonstrated that, for a networked control
scheme implemented over an interference-limited communi-
cation network, the optimal operating points of the control
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Fig. 5. Simulation results illustrating the variation of the load-sharing er-
ror and the network throughput with the number of inverter modules for
(a) CBTDMA, (b) DBTDMA, and (c) DSTDMA cases.

system and the communication network do not necessar-
ily coincide. For such noncooperative systems, an integrated
control–communication optimization framework is described
that achieves an optimal compromise between the conflicting
requirements of the control and communication networks while
operating within the stability bounds of the power network
and the capacity bounds of the communication network. A
case illustration of a homogeneous parallel inverter network is
presented in this paper. The performance of the distributed con-
trol scheme with many-to-many communications using spatial
TDMA and the integrated control–communication framework

Fig. 6. Simulation results for N = 6 illustrating the variations of the load-

sharing error and convergence times with variation of z
(n)
1 , which is one of the

parameters of the weighting function Z(n).

Fig. 7. Throughput performance of the delay-throughput tradeoff for varying
weights W .

Fig. 8. Optimal end-to-end delay performance of the framework providing
delay-throughput tradeoff for varying weights W .

is compared with centralized- and distributed-broadcast-based
TDMA schemes.

The results indicate that joint optimization may not be nec-
essary if the communication protocol does not yield channel
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Fig. 9. (a) Experimental setup consisting of six inverter modules connected
in parallel. (b) Digital controller interface for implementing the integrated
control–communication optimization problem.

interference. For instance, in the one-to-many transmission
schemes (i.e., CBTDMA and DBTDMA), one can increase
network throughput by enhancing the rate of data transmission.
However, since each nodal packet is transmitted one at a time,
there is no interference, and hence, delay can be simultaneously
reduced. On the other hand, for the interference-limited many-
to-many scheme (DSTDMA), a joint optimization issue arises
because increasing the network throughput (due to simultane-
ous transmission) comes at the price of the end-to-end delay due
to channel interference leading to a direct effect on the control
stability and performance.

The distributed control methodology outlined in this paper
can be potentially applied to both homogeneous and heteroge-
neous power networks. Compared to the centralized scheme,
the computational complexity of the distributed scheme is
lower; however, for the latter, the amount of information ex-
change may be the limiting factor. As outlined in this paper,

Fig. 10. Experimental results illustrating the variations of (a) the normalized
convergence time and (b) load-sharing errors of the homogeneous inverter
network.

Fig. 11. Comparison of the computation time required to experimentally solve
the optimization problem at each module for the centralized and distributed
implementations. Note that the entire centralized problem is solved at a single
master module.

clustering can be a way around this problem. While the basic
mechanism of the distributed control for the heterogeneous
and homogeneous power networks is similar, the issue of
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scalability may have to be addressed differently. For instance,
while in a homogeneous network, commonality of function-
ality can be exploited for the geographical clustering of the
control–communication network, in a heterogeneous network,
one may need to focus on the existence of spatial correlation as
a possible means for clustering.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors and do not necessarily
reflect the views of the National Science Foundation and the
Office of Naval Research.

REFERENCES

[1] R. H. Lasseter, “Microgrids and distributed generation,” J. Energy Eng.,
vol. 133, no. 3, pp. 144–149, Sep. 2007. [Online]. Available: http://www.
pserc.wisc.edu/ecow/get/publication/2007public/lasseter_asceg2-colum_
2007.pdf

[2] M. Prodanovic and T. C. Green, “High-quality power generation through
distributed control of a power park microgrid,” IEEE Trans. Ind. Electron.,
vol. 53, no. 5, pp. 1471–1482, Oct. 2006.

[3] S. Chakraborty, M. D. Weiss, and M. G. Simoes, “Distributed intelli-
gent energy management system for a single-phase high-frequency ac
microgrid,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 97–109,
Feb. 2007.

[4] E. Zivi and T. McCoy, “Control of a shipboard integrated power sys-
tem,” in Proc. 33rd Annu. Conf. Inf. Sci. Syst., 1999. [Online]. Available:
www.usna.edu/EPNES/Zivi_McCoy_CISS99.pdf

[5] G. Escobar, P. Mattavelli, A. M. Stankovic, A. A. Valdez, and
J. Leyva-Ramos, “An adaptive control for UPS to compensate unbalance
and harmonic distortion using a combined capacitor/load current sensing,”
IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 839–847, Apr. 2007.

[6] B. Mammano, “Distributed power systems,” TI Application Note.
[Online]. Available: http://focus.ti.com/lit/ml/slup099/slup099.pdf

[7] E. F. Camacho and C. Bordons, Model Predictive Control in the Process
Industry. New York: Springer-Verlag, 1995.

[8] K.-S. Low and R. Cao, “Model predictive control of parallel-connected
inverters for uninterruptible power supplies,” IEEE Trans. Ind. Electron.,
vol. 55, no. 8, pp. 2884–2893, Aug. 2008.

[9] K. Acharya and S. K. Mazumder, “Optimal sequence-based control of
switching power converters with periodic disturbances,” in Proc. IEEE
Power Electron. Spec. Conf., 2008, pp. 3880–3886.

[10] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Syst. Mag., vol. 22, no. 1, pp. 44–52,
Feb. 2002.

[11] S. Talukdar, D. Jia, P. Hines, and B. H. Krogh, “Distributed model predic-
tive control for the mitigation of cascading failures,” in Proc. IEEE Conf.
Decision Control, 2005, pp. 4440–4445.

[12] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, Jun. 2000.

[13] A. Bemporad, S. di Cairano, E. Henriksson, and K. H. Johansson, “Hy-
brid model predictive control based on wireless sensor feedback: An
experimental study,” in Proc. IEEE Conf. Decision Control, 2007,
pp. 5062–5067.

[14] G. Walsh and H. Ye, “Scheduling of networked control systems,” IEEE
Control Syst. Mag., vol. 21, no. 1, pp. 57–65, Feb. 2001.

[15] J. Nilsson, “Real time control systems with delays,” Ph.D. dissertation,
Dept. Autom. Control, Lund Inst. Technol., Lund, Sweden, 1998.

[16] S. K. Mazumder and K. Acharya, “Multiple Lyapunov function based
reaching condition for orbital existence of switching power converters,”
IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1449–1471,
May 2008.

[17] S. K. Mazumder, M. Tahir, and K. Acharya, “Master-slave current-sharing
control of a parallel dc–dc converter system over and RF communica-
tion interface,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 59–66,
Jan. 2008.

[18] K. Acharya, S. K. Mazumder, and M. Tahir, “Fault-tolerant wire-
less network control of load-sharing multiphase interactive power
network,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 2006,
pp. 1167–1174.

[19] L. Xiao, M. Johansson, H. Hindi, S. Boyd, and A. Goldsmith, “Joint
optimization of communication rates and linear systems,” IEEE Trans.
Autom. Control, vol. 48, no. 1, pp. 148–153, Jan. 2003.

[20] X. Liu and A. Goldsmith, “Wireless communication tradeoffs in
distributed control,” in Proc. IEEE Conf. Decision Control, Dec. 2003,
pp. 688–694.

[21] M. M. Ben Gaid, A. Cela, and Y. Hamam, “Optimal integrated control
and scheduling of networked control systems with communication con-
straints: Application to a car suspension system,” IEEE Trans. Control
Syst. Technol., vol. 14, no. 4, pp. 776–787, Jul. 2006.

[22] S. K. Mazumder, M. Tahir, and K. Acharya, “Pseudo-decentralized
control–communication optimization framework for microgrids: A case
illustration,” in Proc. IEEE Power Energy Soc. Transmiss. Distrib. Conf.,
2008, pp. 1–8.

[23] M. Tahir and S. K. Mazumder, “Delay constrained optimal resource
utilization of wireless networks for distributed control systems,” IEEE
Commun. Lett., vol. 12, no. 4, pp. 289–291, Apr. 2008.

[24] D. Bertsekas and R. G. Gallager, Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1991.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. New York:
Cambridge Univ. Press, 2004.

[26] M. Chiang, “Balancing transport and physical layers in wireless multihop
networks: Jointly optimal congestion control and power control,” IEEE J.
Sel. Areas Commun., vol. 23, no. 1, pp. 104–116, Jan. 2005.

[27] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1439–1451, Aug. 2006.

[28] P. Bjorklund, P. Varbrand, and D. Yuan, “Resource optimization of spatial
TDMA in ad hoc radio networks: A column generation approach,” in
Proc. IEEE INFOCOM, 2003, vol. 2, pp. 818–824.

[29] R. Nelson and L. Kleinrock, “Spatial TDMA: A collision-free multihop
channel access protocol,” IEEE Trans. Commun., vol. COM-33, no. 9,
pp. 934–944, Sep. 1985.

Sudip K. Mazumder (SM’02) received the B.Eng.
degree in electrical engineering from the University
of Delhi, India, in 1989, the M.S. degree in elec-
trical power engineering from the Rensselaer Poly-
technic Institute, Troy, NY, in 1993, and the Ph.D.
degree in electrical and computer engineering from
Virginia Polytechnic Institute and State University,
Blacksburg, in 2001.

He is currently the Director of the Laboratory
for Energy and Switching Electronics Systems, De-
partment of Electrical and Computer Engineering,

University of Illinois, Chicago, where he is also an Associate Professor.
He has around 15 years of professional experience and has held R&D and
design positions in leading industrial organizations. He has published over
100 refereed and invited journal and conference papers. He is a Reviewer for
multiple international journals and conferences. He has been the Editor-in-
Chief for the International Journal of Power Management Electronics since
2006. His current areas of interests are interactive power electronics/power net-
works, renewable and alternate energy systems, photonically triggered power
semiconductor devices, and systems-on-chip/module.

Dr. Mazumder was the recipient of the prestigious 2008 Faculty Research
Award and the 2006 Diamond Award from the University of Illinois for
outstanding research performance. He was also the recipient of the Depart-
ment of Energy Solid State Energy Conversion Alliance Award, the National
Science Foundation CAREER Award, and the Office of Naval Research Young
Investigator Award in 2002, 2003, and 2005, respectively, and the Prize Paper
Award from the IEEE TRANSACTIONS ON POWER ELECTRONICS and the
IEEE Power Electronics Society in 2002. He was also the corecipient of the
2007 IEEE Outstanding Student Paper Award at the IEEE International Confer-
ence on Advanced Information Networking and Applications with Dr. M. Tahir.
He has also been serving as an Associate Editor for the IEEE TRANSACTIONS

ON INDUSTRIAL ELECTRONICS since 2003 and for the IEEE TRANSACTIONS

ON AEROSPACE AND ELECTRONIC SYSTEMS since 2008. He was an Associate
Editor for IEEE POWER ELECTRONICS LETTERS until 2005. He will serve as
the Chair of the Student/Industry Coordination Activities for the IEEE Energy
Conversion Congress and Exposition, in San Jose, CA, in 2009. Since 2009,
he has also been serving the IEEE PELS AdCom as the Vice Chair for the
Technical Committee on Distributed Generation and Renewable Energy. He has
been invited by the IEEE and the American Society of Mechanical Engineers
as well as multiple industries, federal agencies, national laboratories, and
universities for several keynote, plenary, and invited lectures and presentations.

Authorized licensed use limited to: University of Illinois. Downloaded on July 31,2010 at 11:22:47 UTC from IEEE Xplore.  Restrictions apply. 



MAZUMDER et al.: JOINT OPTIMIZATION OF CONTROL PERFORMANCE AND NETWORK RESOURCE UTILIZATION 1745

Kaustuva Acharya (M’09) received the B.Eng. de-
gree in electronics and communication engineering
from the National Institute of Technology (formerly
Regional Engineering College), Bhopal, India, in
2000, and the M.S. and Ph.D. degrees in electrical
engineering from the University of Illinois, Chicago,
in 2003 and 2008, respectively.

He is currently a Postdoctoral Research Asso-
ciate with the Laboratory for Energy and Switching
Electronics Systems, Department of Electrical and
Computer Engineering, University of Illinois. His

research interests include modeling, analyses, and control of interactive power
networks for distributed power systems and power electronics for renewable
and alternate energy sources. He has published over 25 refereed international
journal and conference papers.

Dr. Acharya is a Reviewer for the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS and the IEEE TRANSACTIONS ON POWER ELECTRONICS and
several international conferences. He copresented a tutorial titled “Global
stability methodologies for switching power converters” at the IEEE Power
Electronics Specialists Conference in 2007.

Muhammad Tahir (M’09) received the Ph.D. de-
gree in electrical and computer engineering from the
University of Illinois, Chicago.

Before joining the University of Illinois for his
Ph.D., he was a Lecturer with the Department of
Electrical Engineering, University of Engineering
and Technology, Lahore, Pakistan. He is a currently
a Postdoctoral Research Fellow with the Institute
of Microelectronics and Wireless Systems, National
University of Ireland, Maynooth, Ireland. His current
research focuses on the area of sensor integration

and wireless multimedia sensor networks. His research interests include delay-
constrained wireless networks, distributed communication network resource
optimization, and real-time wireless multimedia networks.

Dr. Tahir was the corecipient of the Outstanding Student Paper Award at
the 21st IEEE International Conference on Advanced Information Networking
and Applications in 2007. He is a Reviewer for numerous IEEE journals and
conferences.

Authorized licensed use limited to: University of Illinois. Downloaded on July 31,2010 at 11:22:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


