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An Investigation Into the Fast- and Slow-Scale
Instablilities of a Single Phase
Bidirectional Boost Converter

Sudip K. MazumderMember, IEEEAIli H. Nayfeh, and Dushan BoroyevicMember, IEEE

Abstract—We develop an analytical map for a single phase bidi-
rectional boost converter. This map enables the analysis of the dy-
namics of the converter faster and without any convergence prob- Uy )
lems. For the closed-loop converter, we show how instabilities can L ‘l(
occur on the slow and fast scales. Conventional analyzes based or

s
averaged models can not predict the fast-scale instability because WA rC%
such models do not account for the switching-frequency ripple. IA/YM/ Load
®

Index Terms—Bifurcation, boost, converter, Poincare map,
single phase.
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n
|. INTRODUCTION Us Uy

INGLE-PHASE converters are widely used in power elec ‘}S

ronics [1]-[10]. They are used in applications ranging fror
traction drives to telecommunications. One of the most common
circuits used to achieve unity power factor is a time-varyingg. 1. Single-phase-bidirectional-boost converter.
single phase bidirectional boost converter (SPBBC) as shown in
Fig. 1. A SPBBC has the capability to draw sinusoidal line cur-

. N S which builds upon the generalized averaging method proposed
rents at unity power factor, thereby significantly m|n|m|zmgth% Sanderset gl. [11] ?s a polyphase ggne?ralizationpof F'zhe

total harmonic distortion of the line current. The operation of th . o . .
lynamic phasor approach, and it is applicable to nonlinear

converter has been analyzed by some researchers [1]-[3]. HQ .
ower system models. In steady state, the dynamic phasors
ever, very few have even attempted to properly analyze the s?a—

. . duce to standard phasors from ac circuit theory. In an alternate
bility of such converters. The system of equations for an SPB%%proach, Jacobinet al. [13] have proposed the concept of a

involves discontinuity in control and is time-varying. As such, : )
the analysis of SPBBC is difficult. vector model to analyze the transient and steady-state behaviors

Some publications have analyzed the SPBBC or syster%féjdyphase systems operating under balanced and unbalanced

e : : conditions.

similar to it using smooth averaged models. Mohetnal. . .
e . These analyses have some shortcomings. The conventional

[1] used the concept of quasistatic analysis to analyze the

current-loop stability of an SPBBC operating with hystereuaveraged model completely neglec';s the impact o_fthe switching
- - requency and hence cannot predict the dynamics on the fast

control. Williams [3] developed a small-signal model to . : .
. . scale. We have demonstrated in our earlier papers that insta-
facilitate the design of an output-voltage compensator for

o llity in a standalone or an integrated converter can occur on

resistive and constant-power loads. Sandsrsl. [11], pro- -
. ; .a slow as well as on a fast scale [14]-[16]. Similar results have

posed a more comprehensive approach to derive generalize : :

. een published in [25]-[35] as well. Recently Bass and Sun [23]
averaged models of multi-phase converters. Recently, thée .
. . : and Bass and Lehman [24] have extended the conventional av-
dynamic phasor modeling technique has been used to analyze . S
. . . eraging methodology by taking into account the effect of fast-
unbalanced multi-phase power systems [12]. This technigue . X
SCale dynamics. However, even such a model cannot describe

chaotic dynamics. Even the slow-scale averaged model may
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T./2 T./2 input voltage. The matriced; and B; are obtained from the
g < d vector-differential equation describing (¢) and oc(t) for a
2 given switching state. The solution of (1) is given by
+Vm
Vr(t "t dr ¢ to
Ve(t) X (1) = edo M X (1) + / ol A% B (i ()
\ 0
N wheret, is the initial time. By cascading the solutions of (2)
1 ) 34 g\ 6 over all of the subintervals of thg" -switching cycle, we obtain
5 afirst-order Poincare map for the SPBBC. Next, we assume that
// the forcing function is given by
2 -Ve(t) Vin(t) = vy, cos(wit) 3)
MTlzs  as Z8 zZ8 As zs time (S) wherev,, andw; are the amplitude and frequency @f, ().

Such an assumption is quite close to reality for most of the prac-
Fig. 2. Modulation scheme of the SPBBC involves four feasible switchindCal cases and has been used in many earlier papers [1], [5]-{9],
states. Of these two are zero states (ZS), which occur when either the to 18]. Using (2) and (3) and some algebra, one can show that the
the bottom switches turn on simultaneously. The active states (AS) occurw%p which describes the dynamics of the SPBBC. inithe
eitheru; anduy oru, andu; turn on simultaneously. o . th o

sub-switching cycle (of duratiofi) of the £** switching cycle

is the nominal solution. This possibility is completely ignore(IJS given by [19]

in linearized averaged models. Consequently, the small-signal, Abivig 1 edwidi (Ji—jenT)s;
model can not predict the post-instability dynamics. Alkt+i+l) =™ X(k+i)+ “mM‘(e _I)
Using a switching model and a nonlinear map of a e—dwibi

single-switch boost power-factor-correction circuit and
Lyapunov’'s method and bifurcation analysis, Mazumeleal.
[10] analyzed the stability and dynamics of the converter

in the saturated and unsaturated regions. This methodolqgiere.s; and M; are the Jordan and modal matrices4of I is

overcomes the three deficiencies of linearized averaged modgda identity matrix, and is a complex operator. Although (4)

The new approach predicts not only the instabilities, but alggoks like a map in complex space, a manipulation would show

the mechanism of these instabilities; knowledge of the lattg{at it is actually real.

can lead to effective bifurcation controllers. In this paper, special caséw; = 0): Whenw; = 0, using the relation

we extend the methodology described in [10] to analyze thg — M;'J; M;, (4) reduces to

stability of a SPBBC, operating in the continuous-conduction

mode (CCM) and in the unsaturated region. We show that th& (k + i+ 1) = e*® X (k + i) + (e** — I)A; ' Bivy, (5)

P 1 S )t a8 s e expression e obtaned for e comerter i

' a sub-switching cycle [14], [15]. This confirms that (4) is a

general map, which can be used for ac-dc as well as dc-dc

converters. The methodology to prove the existence of the

first-order Poincare map for a single-phase boost converter is
Fig. 1 shows a single phase bidirectional boost convertégscribed in [10].

[19]. We assume that all of the switches of the SPBBC areUsing (4), we obtain the solutions in all of the sub-intervals of

ideal. The status of the four switches at any instant definesh® k! switching cycle, and by cascading all of these solutions,

switching state. For the bidirectional converter, 16 switchingne can obtain a map that relat€s,; to X;. Such a map has

states are possible. However, only four of these are feasible flog form

the SPBBC. Two of these states are zero states (ZS); the other

two are the active states (AS). As shown in Fig. 2, the four X(k+1) = f(X(K), ta(), ta(k), -+, t6(F)) (6)

switching states of the SPBBC are generated by compariggq js referred to throughout the paper as the first-order Poincare

the error signals:.; (¢) and —v.: (t) with a triangular carrier map of the SPBBC. In (6)4 (k), t2(k), - - - , t6(k) represent the

waveformv,.(t) of frequency fi(= w./2r = 1/T.). The (ime duration of each subswitching cycle in a switching cycle
present methodology holds also holds for case in which tpe period T}

carrier waveform is different from the one shown in Fig. 2. If vin(t) has finite (V) higher-order harmonics and is de-
The dynamical equation of the converter in #& sub-in- scribed by

terval (of duratior;) of thek*" switching cycle is described by N N
X(t) = A X () + Bivin(t) @ Um(t) = Zp=iva, cos(puit+da, )+ vg, sin(puit+ ¢,rzp7 ))

where thed; andB; are matricesX (t) = [iz(t) vc(t)]” rep- wherev,, andvg, and are the amplitudes agd  and¢s, are
resents the states of the converter, andt) is a time-varying the phases of the corresponding harmonics, then, the procedure

X (Jl —jwlléi)_lMi_lBi—l- T’UmMZ

X (e(']i”w’l)‘si—l-f) (Jitjwld:)"'M;™'B; ()

II. ANALYTICAL MAP OF A
SINGLE-PHASE-BIDIRECTIONAL-BOOST CONVERTER
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to obtain the solution of (2) is the same as that used to obtain (ws/LCM (w,,w;)) solutions of (6). For example, if

(4), but it becomes more involved.
Another approach to obtain the solution of (1) whep has
higher-order harmonics is as follows. Let

Yo, (t) = COS(wlt + ¢a1)
EUOQ (t) = COS<2wlt + §ba2) (8)

Yan (1) = cos(Nwit + ¢o )
and

ya, (t) = sin(wit + ¢g,)

yp, (t) = sin(2wit + dg,)

: )
Yy (1) = sin(Nwit + dsy )

then using (8) and (9), one can rewrite (7) as

Vin(t) = Vay Yo, (1) FVauYar () -+ 4 Vay Yo (1)
+TUBYs, (t) +U8,Y8, (t) T+t U YBN (t) (10)

= (27)(10000) rad/sec andy; = (27)(60) rad/sec,
thenLCM(ws, w;) = (27)(20) rad/sec. The latter is often
described as the mode-locked frequency [21].
* w, andw; have no common multiple: In this case, the map
is obtained by interpolation [20].

The first two conditions are two specific cases of the final con-
dition. While, the first two conditions are useful for obtaining
the fixed points of the second-order Poincare map, one has to
rely on linear interpolation for local stability analysis [20].

I1l. ANALYTICAL MAP OF A CLOSED-LOOP SINGLE PHASE
BIDIRECTIONAL BOOST CONVERTER

Having modeled the open-loop converter, we extend the idea
to model a closed-loop converter. We select a control such that
the converter operates with unity power factor. There are many
possible control laws; we select the one shown in Fig. 3 to
demonstrate the modeling methodology. In Fig. 3, C is a row

where matrix andf, 4., f.,, andf; are the feedback-sensor gains for the
Ua, (t) = yala( ) = —wysin (wit + <Z>a1) output- and input-voltages and inductor current, respectively.
Yoy, (1) = —w? cos (Wit + Pa,) = —wiya, (1) Symbolsw;, andw,, are the dc gain and pole frequency for the
Yoo (£) = ya,n(,) = —2w; sin (2wt + gzﬁa,) bus-voltage loop, which has a reference voltage,of. Sym-
Yan, (1) = —4w? cos (2wit+ pa, ) = — 4w ya,(t) bolsw;; andw,; andw.; are the dc gain and pole and zero fre-
. (11) quency for the inner current loop. The closed-loop states of the
" . controllers are represented 1y, 14, andy;. Switchesu; and
Yan (t) = yaNaQ(t% = —Nuwsin (Nwit + ¢a ) uz andu, anduy are complementary. As such and as explained
Jana ()= _NQ wi cos (Nwit + day) in Section 11, only two algebraic equations are sufficient for de-
and = =N wiyay (1) scribing the modulator in Fig. 3.
. Using (3), the idea described in (8)—(12), and Fig. 3, we obtain
Up (1) = y’61"'2(t? = wi cos (wit + ¢'@‘2) the following state-space model, which describes the dynamics
Upo (1) = —wi sin (wit + ¢p,) = —wiys, (1) of the converter for thé" switching state
Up.(t) = yp,, (1) = 2w cos (2wit + ¢, )
92, (1) = —4wi sin (2wit+¢g,) = —dwiys,(t) 19 P (1)
G (1) = Yoy, = Nwicos (Nt + ¢y) . Ya(t)
oa (t) = —=Nwi sin (Nwit + gy, o= W%
= —N2u? t). 5
. -ly,HN() - 1/‘}6(15)
Thus, by using (8)—(12) instead of (3) and following the pro- 7 (t)
cedure described in [19], we obtain a first-order Poincare map Civ Ciss 0 0 0 ¢y Cip
by cascading the solution [described by (2)] for each of the six Ciny  Ciny 0 0 0 0 0
subintervals shown in Fig. 2. Overall, the procedures for ob- Ciz Ciny Cia 0 0 0 0
taining (4) and (6) ifv;,(¢) is described by (3) or (7) are similar. = e, 0 cibst) 0 0 0 0
Once a fist-order map is obtained, we use it to obtain Cioy 0 cinb(t) cin, ci. 0O 0
a second-order Poincare map. Unlike a dc-dc converter, a 0 0 0 0 0 0 1
second-order Poincare map may be necessary for the sta- 0 0 0 0 0 ¢, O
bility analysis of a SPBBC [19]. This is because, even under P (t) 0
steady-state conditions, the output of the first-order Poincare Pa(t) 0
map of a SPBBC, as described by (6), is time varying. A P (t) 1
second-order Poincare map converts the problem from one | pa(t) | + [ 0] vrey. (13)
of analyzing the stability of an orbit to that of analyzing the Ps(t) 0
stability of a fixed point [20], [21]. Depending on the ratiouwf P (t) 0
andws, the second-order Poincare map is obtained as follows. Pr(t) 0

* (ws/wy) is aninteger: In this case, the map is obtained by

cascadindw,/w;) solutions of (6).

In (13), X (t) = (1(t) 2(¢))" and ther;,, are coefficients,

* wy; and w; have a least common multiple (LCM):which can be easily obtained from the dynamical equations of
In this case, the map is obtained by cascadirthei’” topology. We note that, if instead of (3), we use the
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Fig. 3. Closed-loop controller for the SPBBC to achieve unity power-factc

operation.

described by (7), then, as shown in Section I, the overall an:
ysis for the closed-loop system remains the same but becor 140 n

more involved.
The solutions of); (t), ¥2(t), ¥3(t), ¥s(t), andyz(t) in ma-
trix form are
Wa (1) = (41 (£)a(E)hs ()6 (Db (1))
= eAait\I’a(t(]) + (eAait — I) A;lBaivref
=M, e’ M,, 71U, (ty)
+ (Mg e’ ' My, ™" = 1) A7 Bo,vres.  (14)
In (14), Wa(t) = (Pr(t)2(t)a(t)s(t)2 ()" andJ,, and

M,, are the corresponding Jordan and modal matrice$,of

We assume in (14) that Jordan decompositioA gfis possible.
This is based on following values of the power-stage parameters:

L=5mH,rp =0.75Q,rc = 0.5Q, C = 1000 uF, f,4. =
0.01, f; = 0.1, w;, = 35, Wpy =2-m-15 rad/sw;; = 5 - 104,
Wy = 21+ 950 rad/s,v, = 110V/2 V, ws = 27010000 rad/s,
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Fig. 4. Open-loop response of the SPBBC: (a) capacitor voltage in volts and
(b) inductor current in amperes. The horizontal axes for both plots represent the
number of switching cycles.

andw; = 2- - 60 rad/s. In almost all of the practical cases, this
assumption is true. Even if this assumption fails, the remainin

procedure is the same but is more involved.
Letting

W, (1) = Mg " Wo(t) (15)
and then substituting (15) into (14), we obtain

2a(t) = eJﬂ'i tga@o) + (eJﬂ'i tMai _1_ Mll—iII)A;lBaivTef

=eluit¢y + Lo (16)
where
€0 = (&10 €20 &30 E60 E0) T
=W, (to) + Mo, ' Au, 7' Ba,vyes
Lo = (L1o Lag Lo Leo L70)"
=— M, 'TA,, "' Ba,vyes- (17)

Using (13)—(15), we rewrité,(t) as
1/.}4(t) = PlCLiMaiga (t)+P6CLiMaiga (t)P?)aiMaiga (f) (18)

where Py,, = (¢;,,00000), P5,, = (00¢;,, 000), and
Ps,, = (00000 1). Solving (18) yields
t
Ualt) =talt) + [ g(r)ar

to

(19)

where
g(T) :PlaiMdiga(T)

+ PGaiMaiga(T)P3aq‘Mai2a (7—) (20)
Using (16) and (20), one can show that all of the integral terms
in (19) except for one can be determined exactly in matrix form.
The exact solution of the latter is found by integrating its indi-
vidual elements. Once,(t) is obtained, the solution aps(t)
is obtained in a similar manner. Thus, we have an analytical so-
lution for ¥(¢) in thes*" switching cycle. The procedure to ob-
tain the first- and second-order Poincare map using the solution
of the closed-loop stateB(t) is the same as that described in
Section Il.

IV. RESULTS

Fig. 4 shows the behavior of the open-loop SPBBC during
startup obtained using the first-order Poincare map described
by (6). The error signal., which determines the duration of the
zero and active states, is predetermined such that at steady state
the average of the bus voltage is 245 V. It takes about 4000 it-
erations to achieve the steady state. Using the analytical map,
the entire simulation is completed in about 2 min. Using ideal
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%’: 1 { Fig. 7. Impact of variations inv;; on the stability of the bidirectional
% converter: (a) stable system, (b) a period-doubling bifurcation results in
z fast-scale instability, and (c) and (d) increasing the value of the bifurcation
s of = parametefw;;) ultimately leads to chaos.
()
()}
g -1 \ Next, we investigate the dynamics of the closed-loop SPBBC,
which operates as a power-factor correction circuit and in con-
-2 — tinuous-conduction mode (CCM). Using the shooting method
[21], we trace the Floquet multipliers [21] of the second-order
37 5 = ) 3 ) 3 o map of the SPBBC as the voltage-loop controller gair,)

is gradually increased from its nominal value. For stability, all

of the Floquet multipliers should be within the unit circle [21].
() Fig. 5 shows the impact of variations.i, on the stability of the

Fig.6. (a)Asthe current-loop controller gain; is gradually increased, one of SPBBC. It shows that as;, is gradually increased, two of the

the Floguet multipliers of the map exits the unit circle wa, which indicates a il it i ;
period-doubling bifurcation. This leads to an instability on the fast scale. (b) Tt'lzelo_que_t multipliers I_eave t_he unit CIrCI.e away fro.m the real axis,
eigenvalues of the averaged model show a stable system because the avefRgigating a Hopf bifurcation [21]. This results in a slow scale

model can not account for the switching-frequency dynamics. instability, which can be predicted using an averaged model of
the SPBBC [22].

switches, a standard simulator, like Saber, running on the samé&ig. 6(a) shows the impact of variationsdsp; (dc gain) on

machine took over 60 min to complete the same simulation. the stability of the SPBBC. As the controller gain is gradually

4
real (eigenvalues) x 10
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increased, one of the Floquet multipliers exits the unit circle vig11] S. R. Sanders, J. M. Noworolski, X. J. Liu, and G. C. Verghese, “Gen-
—1indicating a period-doubling bifurcation. The Poincare maps
in Fig. 7 show that as the gain is increased, the system which '[§2]
initially stable [Fig. 7(a)], undergoes a torus breakdown via a

period-doubling bifurcation [Fig. 7(b)], which ultimately leads
to chaos [Fig. 7(d)]. Physically, with progressively higher gain,

(13]

a new order is established for the ripple dynamics while the av-
erage dynamics remains the same. This type of instability, whicH4!
occurs on the fast scale [14]-[16], can not be predicted by an av-
eraged model of the SPBBC [14]-[16], [22]. Fig. 6(b) confirms[15]

this prediction. It shows that, for the same variatiowjpused

to obtain Fig. 6(a), all of the eigenvalues of the linearized aver-
aged model of the SPBBC are in the left-half plane; it indicatesi6]

a stable system [21].

V. CONCLUSION

(17]

19]

system to a smooth system. The analytical map enables the

analysis of the dynamics of the system much faster and witho
convergence problems. For the closed-loop system, using t

o

nonlinear map, we investigated the slow- and fast-scale instg21]
bilities of the converter. The slow-scale instability occurs due to

a Hopf bifurcation. Such an instability can also be predicted b);zz]
averaged models [22]. The fast-scale instability occurs due to a
period-doubling bifurcation. The fast-scale instability leads to[23]
a torus breakdown and ultimately the converter enters a chaotic
state. This kind of instability can not be predicted by averagegb4]
models [14]-[16], [19] because they do not account for the

switching-frequency dynamics.
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