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An Investigation Into the Fast- and Slow-Scale
Instabilities of a Single Phase
Bidirectional Boost Converter

Sudip K. Mazumder, Member, IEEE, Ali H. Nayfeh, and Dushan Boroyevich, Member, IEEE

Abstract—We develop an analytical map for a single phase bidi-
rectional boost converter. This map enables the analysis of the dy-
namics of the converter faster and without any convergence prob-
lems. For the closed-loop converter, we show how instabilities can
occur on the slow and fast scales. Conventional analyzes based on
averaged models can not predict the fast-scale instability because
such models do not account for the switching-frequency ripple.

Index Terms—Bifurcation, boost, converter, Poincare map,
single phase.

I. INTRODUCTION

SINGLE-PHASE converters are widely used in power elec-
tronics [1]–[10]. They are used in applications ranging from

traction drives to telecommunications. One of the most common
circuits used to achieve unity power factor is a time-varying
single phase bidirectional boost converter (SPBBC) as shown in
Fig. 1. A SPBBC has the capability to draw sinusoidal line cur-
rents at unity power factor, thereby significantly minimizing the
total harmonic distortion of the line current. The operation of the
converter has been analyzed by some researchers [1]–[3]. How-
ever, very few have even attempted to properly analyze the sta-
bility of such converters. The system of equations for an SPBBC
involves discontinuity in control and is time-varying. As such,
the analysis of SPBBC is difficult.

Some publications have analyzed the SPBBC or systems
similar to it using smooth averaged models. Mohanet al.
[1] used the concept of quasistatic analysis to analyze the
current-loop stability of an SPBBC operating with hysteretic
control. Williams [3] developed a small-signal model to
facilitate the design of an output-voltage compensator for
resistive and constant-power loads. Sanderset al. [11], pro-
posed a more comprehensive approach to derive generalized
averaged models of multi-phase converters. Recently, the
dynamic phasor modeling technique has been used to analyze
unbalanced multi-phase power systems [12]. This technique,
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Fig. 1. Single-phase-bidirectional-boost converter.

which builds upon the generalized averaging method proposed
by Sanderset al. [11], is a polyphase generalization of the
dynamic phasor approach, and it is applicable to nonlinear
power system models. In steady state, the dynamic phasors
reduce to standard phasors from ac circuit theory. In an alternate
approach, Jacobinaet al. [13] have proposed the concept of a
vector model to analyze the transient and steady-state behaviors
of polyphase systems operating under balanced and unbalanced
conditions.

These analyses have some shortcomings. The conventional
averaged model completely neglects the impact of the switching
frequency and hence cannot predict the dynamics on the fast
scale. We have demonstrated in our earlier papers that insta-
bility in a standalone or an integrated converter can occur on
a slow as well as on a fast scale [14]–[16]. Similar results have
been published in [25]–[35] as well. Recently Bass and Sun [23]
and Bass and Lehman [24] have extended the conventional av-
eraging methodology by taking into account the effect of fast-
scale dynamics. However, even such a model cannot describe
chaotic dynamics. Even the slow-scale averaged model may
have more than one equilibrium solution or more than one stable
orbit. However, a linearized small-signal analysis ignores the
presence of these other solutions. Therefore, a small-signal anal-
ysis can not predict anything about the domain of attraction of
the nominal solution or orbit. For example, the averaged model
of a multi-loop dc-dc boost converter may have a quadratic non-
linearity [17]. In other words, this system may have more than
one equilibrium solution. If two of these solutions are stable,
then the system will have two operating points, one of which
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Fig. 2. Modulation scheme of the SPBBC involves four feasible switching
states. Of these two are zero states (ZS), which occur when either the top or
the bottom switches turn on simultaneously. The active states (AS) occur when
eitheru andu or u andu turn on simultaneously.

is the nominal solution. This possibility is completely ignored
in linearized averaged models. Consequently, the small-signal
model can not predict the post-instability dynamics.

Using a switching model and a nonlinear map of a
single-switch boost power-factor-correction circuit and
Lyapunov’s method and bifurcation analysis, Mazumderet al.
[10] analyzed the stability and dynamics of the converter
in the saturated and unsaturated regions. This methodology
overcomes the three deficiencies of linearized averaged models.
The new approach predicts not only the instabilities, but also
the mechanism of these instabilities; knowledge of the latter
can lead to effective bifurcation controllers. In this paper,
we extend the methodology described in [10] to analyze the
stability of a SPBBC, operating in the continuous-conduction
mode (CCM) and in the unsaturated region. We show that the
instability in such a converter can occur on slow and fast scales.
Furthermore, we describe the mechanism of these instabilities.

II. A NALYTICAL MAP OF A

SINGLE-PHASE-BIDIRECTIONAL-BOOSTCONVERTER

Fig. 1 shows a single phase bidirectional boost converter
[19]. We assume that all of the switches of the SPBBC are
ideal. The status of the four switches at any instant defines a
switching state. For the bidirectional converter, 16 switching
states are possible. However, only four of these are feasible for
the SPBBC. Two of these states are zero states (ZS); the other
two are the active states (AS). As shown in Fig. 2, the four
switching states of the SPBBC are generated by comparing
the error signals and with a triangular carrier
waveform of frequency . The
present methodology holds also holds for case in which the
carrier waveform is different from the one shown in Fig. 2.

The dynamical equation of the converter in the sub-in-
terval (of duration ) of the switching cycle is described by

(1)

where the and are matrices, rep-
resents the states of the converter, and is a time-varying

input voltage. The matrices and are obtained from the
vector-differential equation describing and for a
given switching state. The solution of (1) is given by

(2)

where is the initial time. By cascading the solutions of (2)
over all of the subintervals of the -switching cycle, we obtain
a first-order Poincare map for the SPBBC. Next, we assume that
the forcing function is given by

(3)

where and are the amplitude and frequency of .
Such an assumption is quite close to reality for most of the prac-
tical cases and has been used in many earlier papers [1], [5]–[9],
[18]. Using (2) and (3) and some algebra, one can show that the
map, which describes the dynamics of the SPBBC, in the
sub-switching cycle (of duration ) of the switching cycle
is given by [19]

(4)

where and are the Jordan and modal matrices of, is
the identity matrix, and is a complex operator. Although (4)
looks like a map in complex space, a manipulation would show
that it is actually real.

Special case : When , using the relation
, (4) reduces to

(5)

which is the expression we obtained for a dc-dc converter in
a sub-switching cycle [14], [15]. This confirms that (4) is a
general map, which can be used for ac-dc as well as dc-dc
converters. The methodology to prove the existence of the
first-order Poincare map for a single-phase boost converter is
described in [10].

Using (4), we obtain the solutions in all of the sub-intervals of
the switching cycle, and by cascading all of these solutions,
one can obtain a map that relates to . Such a map has
the form

(6)

and is referred to throughout the paper as the first-order Poincare
map of the SPBBC. In (6), represent the
time duration of each subswitching cycle in a switching cycle
of period .

If has finite higher-order harmonics and is de-
scribed by

(7)
where and and are the amplitudes and and are
the phases of the corresponding harmonics, then, the procedure



MAZUMDER et al.: FAST- AND SLOW-SCALE INSTABILITIES 1065

to obtain the solution of (2) is the same as that used to obtain
(4), but it becomes more involved.

Another approach to obtain the solution of (1) when has
higher-order harmonics is as follows. Let

...
(8)

and

...
(9)

then using (8) and (9), one can rewrite (7) as

(10)

where

...
(11)

and

...
(12)

Thus, by using (8)–(12) instead of (3) and following the pro-
cedure described in [19], we obtain a first-order Poincare map
by cascading the solution [described by (2)] for each of the six
subintervals shown in Fig. 2. Overall, the procedures for ob-
taining (4) and (6) if is described by (3) or (7) are similar.

Once a fist-order map is obtained, we use it to obtain
a second-order Poincare map. Unlike a dc-dc converter, a
second-order Poincare map may be necessary for the sta-
bility analysis of a SPBBC [19]. This is because, even under
steady-state conditions, the output of the first-order Poincare
map of a SPBBC, as described by (6), is time varying. A
second-order Poincare map converts the problem from one
of analyzing the stability of an orbit to that of analyzing the
stability of a fixed point [20], [21]. Depending on the ratio of
and , the second-order Poincare map is obtained as follows.

• is an integer: In this case, the map is obtained by
cascading solutions of (6).

• and have a least common multiple (LCM):
In this case, the map is obtained by cascading

solutions of (6). For example, if
rad/sec and rad/sec,

then rad/sec. The latter is often
described as the mode-locked frequency [21].

• and have no common multiple: In this case, the map
is obtained by interpolation [20].

The first two conditions are two specific cases of the final con-
dition. While, the first two conditions are useful for obtaining
the fixed points of the second-order Poincare map, one has to
rely on linear interpolation for local stability analysis [20].

III. A NALYTICAL MAP OF A CLOSED-LOOPSINGLE PHASE

BIDIRECTIONAL BOOSTCONVERTER

Having modeled the open-loop converter, we extend the idea
to model a closed-loop converter. We select a control such that
the converter operates with unity power factor. There are many
possible control laws; we select the one shown in Fig. 3 to
demonstrate the modeling methodology. In Fig. 3, C is a row
matrix and , , and are the feedback-sensor gains for the
output- and input-voltages and inductor current, respectively.
Symbols and are the dc gain and pole frequency for the
bus-voltage loop, which has a reference voltage of . Sym-
bols and and are the dc gain and pole and zero fre-
quency for the inner current loop. The closed-loop states of the
controllers are represented by, , and . Switches and

and and are complementary. As such and as explained
in Section II, only two algebraic equations are sufficient for de-
scribing the modulator in Fig. 3.

Using (3), the idea described in (8)–(12), and Fig. 3, we obtain
the following state-space model, which describes the dynamics
of the converter for the switching state

(13)

In (13), and the are coefficients,
which can be easily obtained from the dynamical equations of
the topology. We note that, if instead of (3), we use the
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Fig. 3. Closed-loop controller for the SPBBC to achieve unity power-factor
operation.

described by (7), then, as shown in Section II, the overall anal-
ysis for the closed-loop system remains the same but becomes
more involved.

The solutions of , , , , and in ma-
trix form are

(14)

In (14), and and
are the corresponding Jordan and modal matrices of.

We assume in (14) that Jordan decomposition ofis possible.
This is based on following values of the power-stage parameters:

H, , , F,
, , , rad/s, ,

rad/s, V, rad/s,
and rad/s. In almost all of the practical cases, this
assumption is true. Even if this assumption fails, the remaining
procedure is the same but is more involved.

Letting

(15)

and then substituting (15) into (14), we obtain

(16)

where

(17)

Using (13)–(15), we rewrite as

(18)

where , , and
. Solving (18) yields

(19)

(a)

(b)

Fig. 4. Open-loop response of the SPBBC: (a) capacitor voltage in volts and
(b) inductor current in amperes. The horizontal axes for both plots represent the
number of switching cycles.

where

(20)

Using (16) and (20), one can show that all of the integral terms
in (19) except for one can be determined exactly in matrix form.
The exact solution of the latter is found by integrating its indi-
vidual elements. Once is obtained, the solution of
is obtained in a similar manner. Thus, we have an analytical so-
lution for in the switching cycle. The procedure to ob-
tain the first- and second-order Poincare map using the solution
of the closed-loop states is the same as that described in
Section II.

IV. RESULTS

Fig. 4 shows the behavior of the open-loop SPBBC during
startup obtained using the first-order Poincare map described
by (6). The error signal , which determines the duration of the
zero and active states, is predetermined such that at steady state
the average of the bus voltage is 245 V. It takes about 4000 it-
erations to achieve the steady state. Using the analytical map,
the entire simulation is completed in about 2 min. Using ideal
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Fig. 5. As the current-loop controller gain! is gradually increased, two
of the Floquet multipliers exit the unit circle as complex conjugates, which
indicates a Hopf bifurcation. This leads to an instability on the slow scale.

(a)

(b)

Fig. 6. (a) As the current-loop controller gain! is gradually increased, one of
the Floquet multipliers of the map exits the unit circle via�1, which indicates a
period-doubling bifurcation. This leads to an instability on the fast scale. (b) The
eigenvalues of the averaged model show a stable system because the averaged
model can not account for the switching-frequency dynamics.

switches, a standard simulator, like Saber, running on the same
machine took over 60 min to complete the same simulation.

(a)

(b)

(c)

(d)

Fig. 7. Impact of variations in! on the stability of the bidirectional
converter: (a) stable system, (b) a period-doubling bifurcation results in
fast-scale instability, and (c) and (d) increasing the value of the bifurcation
parameter(! ) ultimately leads to chaos.

Next, we investigate the dynamics of the closed-loop SPBBC,
which operates as a power-factor correction circuit and in con-
tinuous-conduction mode (CCM). Using the shooting method
[21], we trace the Floquet multipliers [21] of the second-order
map of the SPBBC as the voltage-loop controller gain
is gradually increased from its nominal value. For stability, all
of the Floquet multipliers should be within the unit circle [21].
Fig. 5 shows the impact of variations in on the stability of the
SPBBC. It shows that as is gradually increased, two of the
Floquet multipliers leave the unit circle away from the real axis,
indicating a Hopf bifurcation [21]. This results in a slow scale
instability, which can be predicted using an averaged model of
the SPBBC [22].

Fig. 6(a) shows the impact of variations in (dc gain) on
the stability of the SPBBC. As the controller gain is gradually
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increased, one of the Floquet multipliers exits the unit circle via
1 indicating a period-doubling bifurcation. The Poincare maps

in Fig. 7 show that as the gain is increased, the system which is
initially stable [Fig. 7(a)], undergoes a torus breakdown via a
period-doubling bifurcation [Fig. 7(b)], which ultimately leads
to chaos [Fig. 7(d)]. Physically, with progressively higher gain,
a new order is established for the ripple dynamics while the av-
erage dynamics remains the same. This type of instability, which
occurs on the fast scale [14]–[16], can not be predicted by an av-
eraged model of the SPBBC [14]–[16], [22]. Fig. 6(b) confirms
this prediction. It shows that, for the same variation inused
to obtain Fig. 6(a), all of the eigenvalues of the linearized aver-
aged model of the SPBBC are in the left-half plane; it indicates
a stable system [21].

V. CONCLUSION

We modeled an open- and closed-loop single-phase-bidi-
rectional boost converter using a second-order Poincare map,
which converts the problem from one of analyzing a nonsmooth
system to a smooth system. The analytical map enables the
analysis of the dynamics of the system much faster and without
convergence problems. For the closed-loop system, using the
nonlinear map, we investigated the slow- and fast-scale insta-
bilities of the converter. The slow-scale instability occurs due to
a Hopf bifurcation. Such an instability can also be predicted by
averaged models [22]. The fast-scale instability occurs due to a
period-doubling bifurcation. The fast-scale instability leads to
a torus breakdown and ultimately the converter enters a chaotic
state. This kind of instability can not be predicted by averaged
models [14]–[16], [19] because they do not account for the
switching-frequency dynamics.
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