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Abstract—Emerging trends of high-power-density power-
electronics interfaces for renewable- and alternative-energy
sources have led to the need for high-frequency-inverter designs
without compromising energy-conversion efficiency. In that con-
text, a zero-voltage-switching (ZVS)-based scheme is described in
this letter, for a cycloconverter-type high-frequency-link inverter,
which is applicable for renewable- and alternative-energy sources
as well as other commercial applications. The proposed scheme
achieves the primary-side-converter-assisted switching of the ac/ac
converter switches under ZVS condition. The modes of operation
of the ac/ac converter are explained to outline the behavioral
response. The results on the efficacy of the ZVS-based inverter and
its performance show satisfactory performances.

Index Terms—AC/AC converter, alternative, cycloconverter, en-
ergy sources, fuel cell, high frequency, high-frequency link, in-
verter, photovoltaic, renewable, zero voltage switching (ZVS).

I. INTRODUCTION

H IGH EFFICIENCY, low cost, and high power density
are important attributes of inverters for applications,

including distributed-generation systems with renewable- and
alternative-energy sources (e.g., photovoltaics, wind, and fuel
cells), energy-storage systems, vehicle-to-grid applications,
electric/hybrid-electric/fuel-cell vehicles, compact power con-
version modules for naval, space, and aerospace applications,
and battery-based uninterruptible power supplies. In such sys-
tems, galvanic isolation is often required for safety concerns
and voltage and current scalabilities. In that regard, a high-
frequency-transformer-based approach can be a preferable
choice from the standpoint of weight, footprint, and cost re-
duction. Among the possible topologies, a high-frequency-link
(HFL) pulsewidth-modulated (PWM) inverter can eliminate
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the intermediate LC filter that is needed for a conventional
high-frequency (HF) fixed-dc-link converter approach [1]–[3].
Furthermore, as compared to a resonant-link inverter, an HFL
inverter yields lower switch stress, better total harmonic distor-
tion (THD), and simpler all-device structure (i.e., no passive
components within the power stages). Thus, the PWM HFL
inverter approach is better suited from the viewpoints of cost,
efficiency, and portability.

Two typical HFL inverter topologies have been proposed in
the literature. One is a rectifier-type HFL (RHFL) inverter. It
comprises a primary-side HF dc/ac converter feeding an HF
transformer, which is followed by an ac/dc converter and a
pulsating-dc/ac converter. Thus, the RHFL inverter topology
possesses a structure similar to that of a conventional fixed-dc-
link inverter except for the absence of the dc-link filter [4]–
[9]. One of the features of the RHFL inverter topology is that
the input signal to the output ac/ac stage is pulsating dc in
nature (with encoded information of the primary-side HF dc/ac
converter) that can be used to modulate the ac/ac stage with
reduced switching loss [9].

The other class of topology is a cycloconverter-type HFL
(CHFL) inverter, as illustrated in Fig. 1, which reduces the
conversion complexity by directly placing an ac/ac converter to
the secondary side of an HF transformer [10]–[23], which is fed
by a primary-side HF dc/ac converter. In the CHFL topology,
because the output stage is a single stage, the input to the ac/ac
converter is an HF bipolar ac signal generated by the primary-
side dc/ac converter. Therefore, switching the ac/ac converter
using this primary-side converter information for switching
loss reduction is a possibility. One such zero-voltage-switching
(ZVS) mechanism, leading to reduced-loss switching with the
assistance of a primary-side dc/ac converter, is outlined next in
this letter which can be extended to a higher number of phases
following the same principle.

II. PRINCIPLE OF THE ZVS SCHEME

With reference to the CHFL inverter illustrated in Fig. 1,
Figs. 2 and 3 show two switching schemes (for the ac/ac
converter) that will be referred to as the “conventional scheme”
and the new “ZVS scheme.” The operation of the HF full-
bridge dc/ac converter (which remains the same for both the
schemes), along with the operation of the conventional scheme,
is described in detail in [18] and [22] and is not repeated in
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Fig. 1. CHFL inverter comprising a dc/ac and an ac/ac converter on the primary and secondary sides of the HF transformer.

Fig. 2. Gating signals of the ac/ac converter for the “conventional scheme” when the polarities of the output voltage and output current are (a) the same and
(b) opposite. The illustration in (a) is for positive output voltage and positive output current. The switching states are complementary if the output voltage and
current are both negative. The illustration in (b) is for positive output voltage and negative output current. If the output voltage is negative and the output current
is positive, the switching states will be complementary. The symbols L and H represent low and high switching states while +V and −V represent the minimum
and maximum voltages of Vsec, which can be different from Vi.

this letter. The dc/ac converter produces an HF bipolar volt-
age (Vsec) across the transformer using sinusoidal pulsewidth
modulation. Bipolar voltage is required per switching cycle to
ensure transformer flux balance.

For the conventional scheme and as illustrated in Fig. 2, the
ac/ac converter has two operating scenarios: one with the po-
larities of the output voltage and output current being the same
and the other with the polarities of the output voltage and output
current being opposite. This is explained in detail in [20]. For
the first scenario, the ac/ac converter switches operate at line
frequency with the antiparallel diodes switching at HF (e.g., in
the interval marked “A” in Fig. 2(a) in which the diodes turn
off). For the second scenario, the half-bridge ac/ac-converter
switches operate at HF [e.g., in the interval marked “B”
in Fig. 2(b)] yielding higher switching loss.

For the ZVS scheme, the operating modes (for positive
inverter output current and voltage, Vsec ≥ 0, and Vsec ≤ 0)
of the ac/ac converter are shown in Fig. 4, along with the
switching sequences, which are shown in Fig. 3. The primary-
side dc/ac converter dynamics is not illustrated. However, the
voltage across the transformer secondary (Vsec = 0 or Vsec > 0)
demonstrates that the primary-side dc/ac converter is operating
in either the zero state or the active state. It is also noted that,
even though the output of the dc/ac converter is bipolar, the

Fig. 3. Gating signals of the ac/ac converter for the “ZVS scheme” when the
bipolar transformer secondary voltage is positive/negative.

principle of operation of the ZVS scheme does not change for
negative primary-side voltage output. The operating modes are
discussed below.
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Fig. 4. Operating modes of the ac/ac converter for positive inverter output current and voltage using the dc/ac-converter-assisted ZVS scheme. (a)–(f) Vsec ≥ 0.
(g)–(l) Vsec ≤ 0.

Mode 1: In this mode, Vsec = 0. All of the ac/ac-converter
switches are turned on. As such, the output current is
shared equally between the two arms of the half-bridge
ac/ac converter. Note that the current sharing between the
two arms results in lower conduction loss.

Mode 2: This is a zero-state interval during which Vsec = 0. At
the beginning of Mode 2, the switch S3 is turned off under

ZVS condition. Half of the output current that was flowing
through the lower arm now begins to transfer to the upper
arm. Eventually, the switches S1 and S2 carry the output
current.

Mode 3: This mode initiates when Vsec rises from zero
voltage to the dc-bus level and ends with switch S3

blocking Vsec.
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Mode 4: In this mode, switches S1 and S2 support the output
current. Because switch S3 blocks Vsec, switch S4 can
remain on, or it can be turned off under zero-current
condition.

Mode 5: This mode initiates when the primary-side dc/ac
converter attains a zero state, and as such, Vsec approaches
zero voltage. The output current is primarily supported
by switches S1 and S2 while the output capacitance of
switch S3 discharges, and eventually, it is clamped by the
antiparallel diode of S3.

Mode 6: Similar to Mode 1, this is a zero-state interval. This
mode ends when switch S3 turns on under ZVS condition.
Subsequently, the output current is shared between the two
arms of the ac/ac converter. At the end of this mode, a half
switching cycle is achieved.

The other six modes (Modes 7–12) corresponding to positive
output current and output voltage and Vsec ≤ 0 can be explained
following the explanations for Modes 1–6 and are illustrated
in Fig. 4.

III. RESULTS

The efficacy of the ZVS scheme is ascertained using
open-loop-control experiments on the CHFL inverter topology
(shown in Fig. 1). The results of the ZVS scheme are also
compared with the conventional scheme for the ac/ac converter.
The dc/ac converter operates at 20 kHz which transforms to
a 40-kHz PWM frequency at the output of the secondary-side
ac/ac converter due to frequency doubling. The rated power of
the inverter is 1 kW while the input voltage is set at 36 V. For
the dc/ac converter, OptiMOS power MOSFETs (IPP08CN10N
G) from Infineon are used, which have with following key
specifications: voltage and current ratings of 100 V and 95 A,
respectively, gate charge of 100 nC, and ON-state resistance
of 8.2 mΩ. For the ac/ac converter, Q-class HiPerFET power
MOSFETs (IXFX21N100Q) from IXYS are used. The key
specifications of this device are as follows: voltage and current
ratings of 1000 V and 21 A, respectively; gate-to-source and
gate-to-drain stored charges of 27 and 18 nC, respectively;
and ON-state resistance of 0.5 Ω. A nanocrystalline core (STX
1060M1) is used for the center-tapped HF transformer with
the number of primary and secondary turns being 12 and 104
(i.e., 2 × 52), respectively. The values of the output filter
inductance (Lf ) and capacitance (Cf ) are set to be 2.4 mH and
0.5 μF, respectively.

Fig. 5 shows the comparison of the inverter efficiencies
obtained using the ZVS and conventional schemes. The inverter
efficiency using the ZVS scheme shows an improvement of
over 2% at the rated power and over 3% at around 20% of the
rated power. Fig. 6(a) and (b) shows the overlapping gate-to-
source and drain-to-source voltages for the conventional and
ZVS schemes, illustrating a softer discharge mechanism for
the ZVS scheme. Fig. 7 shows the impact of the enhanced
efficiency using the ZVS scheme on the output voltage of the
inverter. The results of the open-loop inverter clearly show a
higher output-voltage yield for the ZVS scheme as compared to
that of the conventional scheme due to the enhanced efficiency
obtained using the former. Finally, Fig. 8 compares the THD

Fig. 5. Experimental comparison of the efficiencies of the (top trace) ZVS and
(bottom trace) conventional schemes.

Fig. 6. MOSFET (falling trace) drain-to-source voltage and (rising trace)
gate-to-source voltage for the ZVS and conventional schemes.

of the inverter output voltage using the ZVS and conventional
schemes. The conventional scheme results in a small kink
near the zero crossing. Hence, as the output power reduces
and the switching effect becomes more dominant, the slight
difference shows up as a small difference in the THD. However,
at higher power, when the peak current is higher, the difference
is negligible.

IV. SUMMARY AND CONCLUSION

A new ZVS scheme for the ac/ac converter of a CHFL
inverter has been outlined in this letter. By mitigating the device
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Fig. 7. Experimental output-voltage yield of the open-loop inverter with
varying load demands for the (top trace) ZVS and (bottom trace) conventional
schemes.

Fig. 8. Experimental THD of the inverter output voltage using the (bottom
trace) ZVS and (top trace) conventional schemes.

switching loss, the ZVS scheme enables one to potentially
choose power MOSFETs with lower ON-state resistance at the
price of slightly higher output capacitance. Unlike the schemes
outlined in [17]–[20], where a diode and an active device
(e.g., MOSFET or IGBT) conduct during the transition and the
ON-states, in the ZVS scheme, the diode only plays a small
role during the transition. As such, the reverse recovery of the
diode during the transition is reduced. These loss-mitigating
mechanisms yield an improvement in the inverter (i.e., dc/ac
converter followed by the ac/ac converter) efficiency of over
2% at the rated power and over 3% at around 20% of the rated
power using the ZVS scheme. Aside from demonstrating the
inverter efficiency using the ZVS scheme, we have also demon-
strated the output-voltage yield and THD. They clearly show
that a higher voltage and slightly better THD are yielded using
the ZVS scheme due to higher efficiency and soft switching
transition.
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