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Fig. 12. Experimental results illustrating (a) output voltage and current of
the inverter operating at an output power of 2 kW and input voltage of 28 V
and (b) variation of THD with power levels.

Fig. 13. Efficiency of the HF inverter.

4) line frequency of 60 Hz; 5) switching frequency
of 0.2 MHz; and 6) filter inductance and capacitance
of 500 μH and 5 μF, respectively. As shown in Fig. 10(b), the
HF operation yields a compact planar transformer (with low
leakage inductance), which due to modular HF converter, has
a multiplicative reduction in size and a compact output filter.

Fig. 11 shows the gate signals of the FB converter and the
cycloconverter. The small dead-time between the switching of
the switches in each leg ensures that there is no shoot-through
problem due to a short across the FB input. In addition,
the dead-time is necessary to ensure ZVS turn-ON of the
FB switches. Cycloconverter switches operate at line fre-
quency, thereby minimizing switching losses. Fig. 12(a) shows
the output voltage and current waveforms of the inverter

Fig. 14. Experimental results illustrating the performance of the energy
buffering unit during load transients.

operating with a resistive load. The variation of the total-
harmonic distortion (THD) of the output voltage with output
power is shown in Fig. 12(b). The proposed inverter operates
within desired THD bounds (<5%) as per the IEEE standards.

The efficiency of the HF inverter, as a function of the
output power, is shown in Fig. 13. Design 1 is based on
DirectFET-based inverter. Changes made in the Design 2 are
the introduction of low-leakage HF transformer and GaAs
Schottky diode and they improved the overall efficiency of
the inverter as can be seen from Fig. 13. The breakdown
of the component losses of the inverter as a function of
the total loss at rated power is approximately as follows:
1) HF-converter’s MOSFET conduction and switching losses
(14% and 7.6%, respectively); 2) ac/ac converter’s MOSFET
conduction loss (22%); 3) diode conduction and switching
losses (22% and 6.3%, respectively); 4) transformer’s copper
and core losses (9% and 6.8%, respectively); 5) loss in
snubbers placed across the drain and source of the
MOSFETs (7.6%); and 6) output filter loss (4.7%).

Fig. 14 shows the performance of the energy buffering unit
during a load transient from 1.5 to 2 kW and vice versa
with the boost converter providing or absorbing the 500 W.
The energy buffering unit takes a finite amount of time to
respond to the load transient. This results in a sharp drop in
the inverter input voltage when the load transient is initiated
before it recovers back to the operating voltage level, as shown
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in Fig. 14. The reason the FC stack voltage does not normalize
after the transient is because of the lack of availability of a
balance of power systems for the FC stack.

V. CONCLUSION

In this paper, the design guideline for a high-power
density modular inverter for low-voltage and high-current
FC stack applications is presented. Such a direct-power-
conversion inverter can lead to savings in volume and weight
due to HF operation. A guideline to determine the optimal
size of the input filter is outlined from the standpoint of
FC-energy-system cost. It is also illustrated that, for such a
topology, an optimal choice of transformer leakage inductance
is necessary to achieve low power loss and establish a balance
between efficiency and reliability. This is achieved using
a planar transformer design. Further, to reduce the device
losses for the isolated two-stage inverter, DirectFET devices
(with low-ON resistance and gate charge) are used for
the primary-side HF inverter; while line-frequency-switched
devices (with low forward drop) along with high-voltage
reduced-recovery GaAs Schottky diodes are used for
the secondary-side ac/ac cycloconverter. Transient in load
demands, which may jeopardize the FC stack reliability,
is handled through a (low-voltage and low-cost) battery-
sourced energy-buffering unit. Because of the voltage-level
mismatch between the commercially available battery source
and the FC stack rating, boost converter is used for the
energy buffering. Experimental results demonstrating the nom-
inal operations of inverter and energy buffering unit are
presented.
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