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Stability Analysis of Micropower Network
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Abstract— Stability analysis of micropower networks is
gaining importance given the dwindling gap of power generation
and demand as well as increasing penetration of intermittent
renewable energy sources. Instead of using prevalent small-
signal analysis-based approaches, with predictions typically lim-
ited to the vicinity of the equilibrium, the outlined approach
provides a sense of global/semiglobal stability. With regard
to the latter, current approaches to stability analysis are pri-
marily based on time-domain-, energy-function-, and common-
Lyapunov-function-based analyses. This paper outlines a stability
analysis approach based on polynomial Lyapunov function, which
is determined algorithmically using sum-of-squares optimization
in order to maximize the region of attraction (ROA) of an
equilibrium solution. This procedure precludes the need for prior
knowledge of the form of the Lyapunov or energy function. In this
paper, the tradeoff between accuracy of determining the ROA of
a power-system model and the computation overhead incurred
is evaluated.

Index Terms— Micropower network, optimization, polynomial
Lyapunov function (PLF), stability analysis.

I. INTRODUCTION

ASTABILITY-ANALYSIS tool investigates the dynamic
behavior of a micropower network following a destabi-

lizing event and/or disturbance in the system. The primary
objective of the stability analysis is to address the evolv-
ing behavioral dynamics involving the electrical distribution
network, electrical loads, and the generators. In typical small-
signal analysis [1], [2], the stability of equilibrium solution
of the overall nonlinear power network model is obtained
by linearizing the nonlinear model. The validity of the lin-
earized (small-signal) model is near a small vicinity of the
equilibrium solution, and hence using this model, the behav-
ioral dynamics of the original system in the presence of
large-signal response is not possible to carry out [3], [4].
In order to prove the large-signal stability of a micropower
network [5], [6], a Lyapunov function (LF) V (x) has to be
found that fulfills the Lyapunov conditions in a domain �
around the equilibrium point (located at x = 0, where x is the
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state variable vector) [7], [8]{
V (x) > 0 for ∀x �= 0

V (0) = 0
(1)

V̇ (x) = ∇V (x) · F(x) ≤ 0 for ∀x (2)

where F(x) are the functions of the differential equations of
the analyzed system

ẋ = F(x). (3)

In addition to assessing the stability of the system, from a
practical point of view, it is useful to determine the region
of attraction (ROA) of the equilibrium point(s) xeq to assess
robustness. Conceptually, the ROA of an equilibrium state xeq
is the set of all the states x from which the network evolves
to the equilibrium point xeq without quitting the ROA itself.
Mathematically, the ROA can be defined [7] as a compact
invariant set, connected to the equilibrium state xeq defined by

V (x) < γ ∀x ∈ ROA. (4)

Once the LF and the value γ have been obtained, the stability
in a state x of the system can be assessed simply by checking
if V (x) < γ , which requires a considerably faster evaluation
than other analysis methods. The first objective of this paper is
to evaluate the feasibility of applying sum-of-squares (SOS)
optimization [9], [10] techniques to determine a polynomial
LF (PLF) in micropower-network stability problems. Once the
feasibility has been determined, a second objective of this
paper is to determine the ROA estimate of the equilibrium.
A final objective is to assess the validity of the stability
predictions (i.e., the ROA) obtained using the PLF with that
obtained using time-domain simulation (TDS).

II. SYNTHESIS OF POLYNOMIAL LYAPUNOV FUNCTION

The stability of a system would be demonstrated just by
identifying an LF satisfying (1)–(4) in a specific domain.
However, as shown in Fig. 1, each LF leads to a different
estimation of the ROA. Because the goal is to obtain the
best possible estimation of the ROA, optimization techniques
have to be used to determine the best LF (i.e., the LF leading
to the widest estimate of the ROA). To force V (x) to fulfill
the Lyapunov conditions in the widest possible domain, a set
containment problem is formulated with the following three
different sets (as shown in Fig. 2).

1) Set A (Green): Set of the states x within an arbi-
trary radius β [in other words, satisfying the inequality
p(x) < β, where p(x) has an arbitrary shape].

2168-6777 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEE
E P

ro
of

2 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS

Fig. 1. Domains corresponding to different LFs.

Fig. 2. Set containment formulation of the optimization.

2) Set B (Red): Set of the states x for which an arbitrary
γ is an upper bound of the LF V (x).

3) Set C (Blue): Set of the states x for which V̇ (x) is
negative. It should be noted that this the only set that
directly depends on F(x).

4) Set A ⊆ set B ⊆ set C.

To solve this problem, set A is progressively expanded by
increasing β, which in turn expands set B by forcing an
increase in γ until the limits of set C are reached. The proce-
dure can be expressed in terms of the following optimization
problem:

max β, γ s.t. Set A ⊆ Set B ⊆ Set C. (5)

To express the set containment conditions in terms of inequal-
ities, the polynomial S-procedure [11] can be used. Given two
sets S1 and S2 and two polynomials g1 and g2 defined so that

S1 = {x ∈ R
n : g1(x) ≤ 0}

S2 = {x ∈ R
n : g2(x) ≤ 0}. (6)

The polynomial S-procedure establishes that S1 is included in
S2 if there exists a positive definite polynomial λ (x) such that

−g1(x) + λ(x) · g2(x) is positive definite. (7)

Finally, in order to overcome the difficulty of demonstrating
the positive definiteness, the positive definiteness conditions
are relaxed into SOS condition, leading to the following
formulation of the problem:
max β, γ s.t.

V (x) − L1(x) is SOS (8)

− [∇V (x) · F(x) + L2(x) + s2(x)

· (γ − V (x))] is SOS (9)

− [(V (x) − γ ) + s1(x) · (β − p(x))] is SOS (10)

L1(x) = ε1x T x, L2(x) = ε2x T x (11)

where L1(x), L2(x), s1(x), and s2(x) are SOS; ε1 and ε2 are
arbitrary positive numbers; and p(x) is a fixed SOS polyno-
mial that determines the shape of set A that is progressively
enlarged to force set B to grow.

III. STABILITY-ANALYSIS ALGORITHM

The optimization problem formulated in (8)–(11) is bilinear
in many of the decision variables, namely, the terms s2(x) · γ
and s2(x) · V (x) in (10) and the term s1(x) · β in (11).
An SOS problem, however, has to be linear in the decision
variables. Hence, an iterative procedure is needed to approx-
imate the bilinear expressions by several consecutive linear
approximations [12]. This sequential approximation, referred
to as VS iteration, allows one to expand an initial estimation
of the ROA. While providing good results in many cases,
this procedure has some weaknesses from a practical point
of view. First, the selection of the shaping polynomial p(x)
can be critical for obtaining a good estimate of the ROA.
Unfortunately, the selection of the right p(x) depends on the
specific model and is not trivial. Second, the performance of
this procedure requires an initial estimation of V (x), which is
not always easy to know a priori. To overcome the limitations
of using a fixed p(x), a double-loop scheme is proposed that
sets p(x) = V (x) when the VS iteration has converged to a β
and restarts a new VS iteration until p(x) converges. In this
paper, two different algorithms have been considered that are
outlined in the following and their performances have been
evaluated: 1) Algorithm A [captured in (Fig. 3)], which uses
a standard VS iteration as outlined in [12], comprises Steps
1–5a and 2) Algorithm B, in which p(x) is updated in each
iteration based on V (x), comprises Steps 1–4 and 5b. The
steps are described as follows:

1) Step 1: To start the VS iteration, a first estimation of
the LF is determined using the linear approximation
of (3) in the vicinity of the equilibrium point yielding
the following:

ẋ = A · x (12)

where A is the Jacobian of F(x). Once A has been
determined, if all of its eigenvalues are found to have
negative real parts, then there exists a positive-definite
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Fig. 3. Set containment formulation of the optimization for Algorithm A.
For Algorithm B, only the stop condition is not based on the convergence of
β but based on the convergence of �p(x), which is described by (15).

matrix P (where Q must be positive definite) that
satisfies the following condition:

AT P + P A + Q = 0. (13)

The corresponding LF is determined using

V = xT Px . (14)

2) Step 2: In this step, V (x) is held fixed while γ and s2(x)
are determined using (9) and (11), using the bisection
method to iteratively determine the biggest value of γ .

3) Step 3: In this step, V (x) is held fixed while both β and
s1(x) are determined using (10). Because (10) is bilinear
in β and s1(x), bisection is used to obtain s1(x) while
keeping β fixed.

4) Step 4: In this step β, γ , s1(x), and s2(x) are held fixed
while V (x) is determined using (8)–(11) and normalized
with respect to γ to avoid numerical problem.

5) Step 5a: If the value of β converges, the iteration process
is stopped; otherwise, the process flow restarts at Step 2.

6) Step 5b: Determine the variation in the shaping function
as follows:

�p(x) = p(x) − V (x) (15)

and subsequently set p(x) = V (x). If the sum of the
squares of the coefficients of the polynomial �p(x)

Fig. 4. General topology of the microgrid considered in the study.

attains a value lower than a specified threshold, the iter-
ation process is stopped. Otherwise, the process flow
restarts at Step 2.

It should be noted that in Algorithm B, comparison of the
values of β obtained from different iterations does not provide
any meaningful information about the convergence because
p(x) changes in each of the iterations. Therefore, other criteria
such as the N-D volume (referred to as N-volume in this
paper) contained inside the ROA have to be used to compare
successive estimations of the ROA or the ROAs obtained using
different methods.

IV. DYNAMIC MODEL OF A MULTIMACHINE

MICROPOWER NETWORK

Fig. 4 shows the structure of the microgrid that has been
considered in this paper, which is composed of a set of n
synchronous generators (one of whom represents an infinite
grid) and m fixed loads, interconnected by electrical lines.
Equations (16) and (17) are posed for each generation bus (rep-
resented in the left side), while (18) is posed for each load bus.
In such a micropower network with n generators, the swing
dynamics of the i th generator is given by

δ̇i = ωi (16)

Mi ω̇i = −Diωi + Pmec,i − Pcalc(i) (17)

where Pcalc(i) = ∑N
j=1 UiU j (Gijcos(δij) + Bijsin(δij)), δij =

δi − δ j is the difference of angles of the voltages at buses i
and j , ωi , Di , and Mi are, respectively, the angular speed,
the damping, and the inertia constant of the generator, Pmec,i
is the mechanical power fed to the rotor of the generator,
Ui is the modulus of the voltage, and Gij and Bij are the
real and imaginary parts of the i th and j th elements of the
nodal admittance matrix Ybus. If the i th generator is assigned
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to be the slack generator, (16) is not taken into account
because δi = 0. If the i th generator is assumed to be infinite,
Mi is infinite, and therefore, ωi is assumed to be constant
(i.e., ω̇i = 0). The power PL ,i consumed by the loads at the
i th bus is expressed as follows:

PL ,i = −Pcalc(i) (18)

where N represents the total number of buses.
Equations (16)–(18) are rewritten as a differential-algebraic
equation {

Ẋ = F(X, Y )

0 = G(X, Y )
(19)

where X = [δ1 ω1 δ2 ω2 . . .]T , Y = [δN0 δN0+1 . . .]T , and
N0 represents the index of the first load bus, N0 +1 represents
the second load bus, and so on, and

F(X, Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1

− D1

M1
ω1 + 1

M1
(Pmec,1 − Pcalc(1))

ω2

− D2

M2
ω2 + 1

M2
(Pmec,2 − Pcalc(2))

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

G(X, Y ) =
⎡
⎢⎣

−PL ,N0 − Pcalc(N0)
−PL ,N0+1 − Pcalc(N0 + 1)

...

⎤
⎥⎦. (20)

Expressing Y in terms of X using the algebraic equation
0 = G(X, Y ) in (20) and substituting this relationship back
in the dynamical model Ẋ = F(X, Y ), one can transform
the overall model (20) to solely a state-dependent vector-
differential equation that is affine in form. To obtain a dynam-
ical model centered at the origin, the following translation:

ωi = �ωi + ωi,SS, δi = �δi + δi,SS (21)

is used to obtain the dynamical model in the error coordinates.
In (21), ωi,SS and δi,SS are the steady-state values for ωi and
δi , and �ωi and �δi represent the differences between the
instantaneous and the equilibrium values of the states. Finally,
the resultant model in the error coordinates is expanded using
the Taylor series to obtain a dynamical model in polynomial
form.

V. CASE A: SYSTEM WITH NO LOSSES

A. Model Description

The first of the test cases is a fourth-order nonlossy model
that has been extensively used as a reference case [13]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = − sin(x1) − 0.5 sin (x1 − x3) − 0.4x2

ẋ3 = x4

ẋ4 = −0.5 sin(x3) − 0.5 sin (x3 − x1) − 0.4x4 + 0.05.

(22)

The dynamic model (22) has multiple equilibrium points
[obtained by equating the right-hand side of (22) to 0]

Fig. 5. ROA based on the actual lossless model and the TP model of varying
degrees. The estimate of the ROA using TP model of degree 7 yields the best
tradeoff between accuracy and computational overhead.

with the nominal equilibrium being (x1,eq = 0.02001,
x2,eq = 0, x3,eq = 0.06003, x4,eq = 0). Using this nominal,
(22) is translated to the origin yielding the dynamical model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 0.0200cos(x1)cos(x3) − 0.0200cos(x1) . . .

− 0.9998sin(x1) − 0.4x2 . . .

+ 0.4996cos(x1)sin(x3) − 0.4996cos(x3)sin(x1) . . .

+ 0.0200 sin(x1) sin(x3)

ẋ3 = x4

ẋ4 = 0.4996cos(x3)sin(x1) − 0.0299cos(x3) . . .

− 0.4991 sin(x3) − 0.0200cos(x1)cos(x3) . . .

− 0.4996cos(x1)sin(x3) − 0.5000x4 . . .

− 0.0200 sin(x1) sin(x3) + 0.0500.

(23)

Subsequently, using a Taylor series, (23) is converted to
Taylor-polynomial (TP) representations of degree 3 and 7
using, respectively, (24) and (25). Accuracies of these TP
models are illustrated in Fig. 5 (the best TP estimates are
those closer to the TDS-based contour, without trespassing
its limits). The degree of the TP approximation is decided
keeping an eye on the tradeoff between model accuracy and
computational overhead for determining the PLFs and the
ROA. For this analysis, the convergence is determined after
5000 time steps of 10 ms each by assessing if the differ-
ences between the final and equilibrium values of the state
variables are within an N-D sphere (N-sphere) of radius 0.1.
To facilitate the analysis of results obtained in this study case,
Fig. 6 shows the ROA around the equilibrium point (green
area) to which several transients have been superimposed. The
initial states are represented with a cross, while the final states
are depicted with a circle and a point. The stability conditions
ensure that all the trajectories starting inside the ROA will
never leave the ROA. Thus, unlike small-signal stability,
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Fig. 6. ROA and time-domain transients in the state-variables space
(TDS based, Case A).

Fig. 7. ROA obtained for Case A with the TP of degree 3.

the PLF-based ROA approach ascertains the large-signal sta-
bility of the corresponding equilibrium solution. That is,
without doing any TDS, one can ascertain the convergence of
an evolving state trajectory if the initial condition lies within
the ROA that represents the invariant subspace.

B. Stability Analysis

1) Performance Analysis Using the TP of Degree 3:
Fig. 7 shows the ROA obtained using Algorithms A and B
using the TP of degree 3 of model (24). The N-volume of
the ROAs has been calculated to allow a uniform comparison
of the extension of each ROA, independently of the shaping

Fig. 8. Progress of ROA estimation with the time for Case A with the TP
of degree 3.

function used in each case⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 0.2499x3
1 − 0.2498x2

1 x3 + 0.2498x1x2
3 + . . .

− 0.083267x3
3 + 0.019995x1x3 − 0.0099973x2

3 . . .

− 1.4994x1 − 0.4x2 + 0.4996x3

ẋ3 = x4

ẋ4 = −0.083267x3
1 + 0.2498x2

1x3 − 0.2498x1x2
3

+ 0.16645x3
3 + 0.0099973x2

1 − 0.019995x1x3 . . .

+ 0.024988x2
3 + 0.4996x1 − 0.9987x3 − 0.5x4

(24)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 0.0020817x5
1x2

3 − 0.0034694x4
1x3

3 . . .

+ 0.0034694x3
1x4

3 − 0.0020817x2
1x5

3

− 0.012495x5
1 . . . + 0.020817x4

1x3 − 0.041633x3
1x2

3

+ 0.041633x2
1x3

3 . . . − 0.020817x1x4
3 + 0.0041633x5

3

− 0.0033324x3
1x3 . . . + 0.0049987x2

1x2
3

− 0.0033324x1x3
3 + 0.2499x3

1 . . .

− 0.2498x2
1x3 + 0.2498x1x2

3 − 0.083267x3
3 . . .

+ 0.019995x1x3 − 0.0099973x2
3 − 1.4994x1 . . .

− 0.4x2 + 0.4996x3

ẋ3 = x4

ẋ4 = −0.0020817x5
1x2

3 + 0.0034694x4
1x3

3 . . .

− 0.0034694x3
1x4

3 + 0.0020817x2
1x5

3

+ 0.0041633x5
1 . . . − 0.020817x4

1x3 + 0.041633x3
1x2

3

− 0.041633x2
1x3

3 . . . + 0.020817x1x4
3 + 0.0083225x5

3

+ 0.0033324x3
1x3 . . . − 0.0049987x2

1x2
3

+ 0.0033324x1x3
3 − 0.0020824x4

3 . . .

− 0.083267x3
1 + 0.2498x2

1x3 − 0.2498x1x2
3 . . .

+ 0.16645x3
3 + 0.0099973x2

1 − 0.019995x1x3 . . .

+ 0.024988x2
3 − 0.4996x1 − 0.5x2 + 0.9987x3.

(25)

The Monte Carlo-based function p-volume approach [14] has
been used for determining the N-volumes. Fig. 8 compares
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TABLE I

V (x) FOR CASE A OBTAINED WITH THE TP OF DEGREE 3 AND ALGORITHM A

TABLE II

V (x) FOR CASE A OBTAINED WITH THE TP OF DEGREE 3 AND ALGORITHM B

the temporal evolution of the N-volume of the ROA esti-
mated with Algorithms A and B. All the tested algorithms
show a big improvement of the ROA estimation in the first
iterations followed by a slowing down phase. Table I shows
the polynomials obtained using Algorithm A (β = 3.2860 and
γ = 1.0002 that following Steps 2 and 3 are obtained using

the bisection method over a prespecified range of 0.01–100 for
both the parameters). It shows how the PLF is dependent on
the state variables and the coefficients corresponding to these
state variables with varying degrees that are also indicated
in Table I. Table II shows the polynomials obtained using
Algorithm B (β = 0.6645 and γ = 1.0002). The executions
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Fig. 9. ROA obtained for Case A with the TP of degree 7.

Fig. 10. Progress of ROA estimation with the time for Case A with the TP
of degree 7.

of Algorithm A stopped after iteration 24, before reaching the
maximum number of iterations (which was set to 60), when
the variation of β was lower than 0.05% of its value. The
N-volume always increased until the increase is sufficiently
small. On the other hand, Algorithm B achieves a better
estimation of the ROA because of its ability to adapt p(x),
but it is not guaranteed to monotonically converge to the
largest ROA and can incur some small oscillations as observed
in Fig. 8.

2) Performance Analysis Using the TP of Degree 7:
Fig. 9 shows the ROA obtained using Algorithms A and B
using the TP of degree 7 of model (25). Table III shows
the polynomials obtained using Algorithm A (β = 4.4083
and γ = 1.0002). Table IV shows the polynomials obtained
using Algorithm B (β = 0.7477 and γ = 1.0002). Fig. 10
compares the temporal evolution of the N-volume of the

Fig. 11. ROA based on the actual lossy model and the TP model of degrees
3 and 7.

Fig. 12. ROA obtained for Case B with the TP of degree 3.

ROA estimated using Algorithms A and B. All executions
of Algorithms A and B stop when the maximum number
of iterations (which is set at 60) is reached. Each iter-
ation takes a different amount of time depending on the
degree of the polynomials and the algorithm used. For
each iteration, N-volume of the ROA estimate increases for
Algorithm A, whereas Algorithm B yields a better esti-
mate of the ROA relatively faster, but may incur small
oscillations.

VI. CASE B: SYSTEM WITH LOSSES

A. Model Description

The second test case is a fourth-order model (26) with
losses, which has been used in the literature as a reference
case [13]. In (26), xij = xi − x j . The nominal equilibrium
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TABLE III

V (x) FOR CASE A OBTAINED WITH THE TP OF DEGREE 7 AND ALGORITHM A

TABLE IV

V (x) FOR CASE A OBTAINED WITH THE TP OF DEGREE 7 AND ALGORITHM B

of (26) is (x1,eq = 0.4680, x2,eq = 0, x3,eq = 0.04630,
x4,eq = 0). Using this nominal equilibrium and following
Section IV, (26) is transformed to a TP representation of
degrees 3 and 7, respectively, as captured in (27) and (28)

(see the next page). Accuracies of these TP models are
illustrated in Fig. 11, where convergence is determined after
5000 time steps of 10 ms each by assessing if the differences
between the final and equilibrium values of the state variables
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TABLE V

V (x) FOR CASE B OBTAINED WITH THE TP OF DEGREE 3 AND ALGORITHM A

TABLE VI

V (x) FOR CASE B OBTAINED WITH THE TP OF DEGREE 3 AND ALGORITHM B

Fig. 13. Progress of ROA estimation with the time for Case B with the TP
of degree 3.

are within an N-sphere of radius 0.1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 33.5849 − 1.8868 cos(x13) − 5.2830 cos(x1)

−16.9811 sin(x13) − 59.6226 sin(x1) − 1.8868x2

ẋ3 = x4

ẋ4 = 48.4810 + 11.3924 sin(x13) − 1.2658 cos(x13)

−3.2278 cos(x3) − 99.3671 sin(x3) − 1.2658x4

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 11.3x3
1 − 8.4857x2

1x3 + 8.4857x1x2
3 . . .

−2.8286x3
3 + 16.7913x2

1 − 1.9717x1x3 . . .

+0.98584x2
3 − 67.7998x1 + 16.9715x3 − 1.8868x2

ẋ3 = x4

ẋ4 = −1.8998x3
1 + 5.6993x2

1x3 − 5.6993x1x2
3 . . .

+16.4771x3
3 + 0.60441x2

1 − 1.2088x1x3 . . .

+24.2388x2
3 + 11.3986x1 − 98.8623x3 − 1.2658x4.

(27)

Fig. 14. ROA obtained for Case B with the TP of degree 7.

B. Stability Analysis

1) Performance Analysis Using the TP of Degree 3:
Fig. 12 shows the ROA obtained using Algorithms A and B
using the TP of degree 3 of model (27). Fig. 13 compares the
temporal evolution of the N-volume of the ROA estimated
using Algorithms A and B. Algorithm B yields a better esti-
mate of the ROA relatively faster (with minimal oscillations)
compared with Algorithm A. Table V shows the polynomials
obtained using Algorithm A (β = 0.5760 and γ = 1.0002).
Table VI shows the polynomials obtained using Algorithm B
(β = 0.9834 and γ = 0.9995). As indicated in the description
of the algorithms (see Steps 2 and 3), γ and β are obtained
using the bisection method over a prespecified range (in this
case, the range [0.01, 100] for both parameters).

2) Performance Analysis Using the TP of Degree 7:
Fig. 14 shows the ROA obtained using Algorithms A and B
using the TP of degree 7 of model (28). Fig. 15 compares the
temporal evolution of the N-volume of the ROA estimated
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TABLE VII

V (x) FOR CASE B OBTAINED WITH THE TP OF DEGREE 7 AND ALGORITHM A

TABLE VIII

V (x) FOR CASE B OBTAINED WITH THE TP OF DEGREE 7 AND ALGORITHM B

Fig. 15. Progress of ROA estimation with the time for Case B with the TP
of degree 7.

with Algorithms A and B. Convergence of Algorithm B is
faster, with no oscillations. Table VII shows the polynomials
obtained using Algorithm A (β = 0.5542 and γ = 1.0010).
Table VIII shows the polynomials obtained using Algorithm B
(β = 0.9850 and γ = 1.0010).

VII. CONCLUSION

An investigation into the effectiveness of polynomial-
Lyapunov-function-based methodology for stability analysis
of a micropower network is outlined. While the condition
of LF-based stability analysis remains the same, what is
different is how the LF is determined autonomously using
a semidefinite optimization-based methodology along with
determining the ROA of the equilibrium solution without using
computationally intensive time-domain solution. Furthermore,
two algorithms are outlined and the mechanism and their effi-
cacies and convergence analyses are illustrated for a lossless

and a lossy dynamical system model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 0.013452x7
1 − 0.023571x6

1x3 + 0.070714x5
1x2

3 . . .

−0.11786x4
1x3

3 + 0.11786x3
1x4

3 − 0.070714x2
1x5

3 . . .

+0.023571x1x6
3 − 0.0033674x7

3 + 0.046642x6
1 . . .

−0.016431x5
1x3 + 0.041077x4

1x2
3 − 0.054769x3

1x3
3 . . .

+0.041077x2
1x4

3 − 0.016431x1x5
3 + 0.0027384x6

3 . . .

−0.565x5
1 + 0.70714x4

1x3 − 1.4143x3
1x2

3 . . .

+1.4143x2
1x3

3 − 0.70714x1x4
3 + 0.14143x5

3 . . .

−1.3993x4
1 + 0.32861x3

1x3 − 0.49292x2
1 x2

3 . . .

+0.32861x1x3
3 − 0.082153x4

3 + 11.3x3
1 . . .

−8.4857x2
1x3 + 8.4857x1x2

3 − 2.8286x3
3 . . .

+16.7913x2
1 − 1.9717x1x3 + 0.98584x2

3 . . .

−67.7998x1 + 16.9715x3 − 1.8868x2

ẋ3 = x4

ẋ4 =−0.0022616x7
1+0.015831x6

1x3−0.047494x5
1x2

3 . . .

+0.079157x4
1x3

3 − 0.079157x3
1x4

3 + 0.047494xx2
1x5

3 . . .

−0.015831x1x6
3 + 0.019616x7

3 + 0.0016789x6
1 . . .

−0.010074x5
1x3 + 0.025184x4

1x2
3 − 0.033578x3

1x3
3 . . .

+0.025184x2
1x4

3 − 0.010074x1x5
3 + 0.06733x6

3 . . .

+0.094988x5
1 − 0.47494x4

1x3 + 0.94988x3
1x2

3 . . .

−0.94988x2
1x3

3 + 0.47494x1x4
3 − 0.82385x5

3 . . .

−0.050368x4
1 + 0.20147x3

1x3 − 0.30221x2
1x2

3 . . .

+0.20147x1x3
3 − 2.0199x4

3 − 1.8998x3
1 . . .

+5.6993x2
1x3 − 5.6993x1x2

3 + 16.4771x3
3 . . .

+0.60441x2
1 − 1.2088x1x3 + 24.2388x2

3 . . .

+11.3986x1 − 98.8623x3 − 1.2658x4.

(28)



IEE
E P

ro
of

MAZUMDER AND PILO DE LA FUENTE: STABILITY ANALYSIS OF MICROPOWER NETWORK 11

ACKNOWLEDGMENT

The authors acknowledge the use of following softwares:
SOSTOOLS 2.05, SeDuMi 1.3, and Multipoly 2.00. How-
ever, any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors and do not necessar-
ily reflect the views of the DOE or the NSF.

REFERENCES

[1] C. Wang, Y. Li, K. Peng, B. Hong, Z. Wu, and C. Sun, “Coordinated
optimal design of inverter controllers in a micro-grid with multiple
distributed generation units,” IEEE Trans. Power Syst., vol. 28, no. 3,
pp. 2679–2687, Aug. 2013, doi: 10.1109/TPWRS.2013.2245922.

[2] F. Katiraei, M. R. Iravani, and P. W. Lehn, “Small-signal dynamic model
of a micro-grid including conventional and electronically interfaced
distributed resources,” IET Generat., Transmiss. Distrib., vol. 1, no. 3,
pp. 369–378, May 2007, doi: 10.1049/iet-gtd:20045207.

[3] A. Arapostathis, S. Sastry, and P. Varaiya, “Global analysis of swing
dynamics,” IEEE Trans. Circuits Syst., vol. 29, no. 10, pp. 673–679,
Oct. 1982.

[4] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2002.

[5] S.K. Mazumder, “Nonlinear analysis and control of standalone, parallel
DC-DC, and parallel multi-phase PWM converters,” Ph.D. dissertation,
Dept. Elect. Comput. Eng., Virginia Tech, Blacksburg, VA, USA, 2001.

[6] S. K. Mazumder and E. Pilo de la Fuente, “Dynamic stability analysis of
power network,” in Proc. IEEE Energy Convers. Conf. Expo., Sep. 2015,
pp. 5808–5815.

[7] M. Vidyasagar, Nonlinear Systems Analysis. Philadelphia, PA, USA:
SIAM, 2002.

[8] S. K. Mazumder and K. Acharya, “Multiple Lyapunov function based
reaching condition for orbital existence of switching power convert-
ers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1449–1471,
May 2008.

[9] S. K. Mazumder and E. P. de la Fuente, “Transient stability analy-
sis of power system using polynomial Lyapunov function based
approach,” in Proc. IEEE PES GM, Jul. 2014, pp. 1–5, doi:
10.1109/PESGM.2014.6939524.2014.

[10] J. B. Lasserre, “Global optimization with polynomials and the problem
of moments,” SIAM J. Optim., vol. 11, no. 3, pp. 796–817, 2001.

[11] P. A. Parillo, “Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization,” Ph.D. dissertation,
California Inst. Technol., Pasadena, CA, USA, 2000.

[12] A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A-18
flight controllers to the falling-leaf mode: Nonlinear analysis,” J. Guid.,
Control, Dyn., vol. 34, no. 1, pp. 73–85, 2011.

[13] H.-D. Chang, C.-C. Chu, and G. Cauley, “Direct stability analysis
of electric power systems using energy functions: Theory, applica-
tions, and perspective,” Proc. IEEE, vol. 83, no. 11, pp. 1497–1529,
Nov. 1995.

[14] G. J. Balas, A. Packard, P. Seiler, and U. Topcu. (2009).
Robustness Analysis of Nonlinear Systems. [Online]. Available:
http://www.aem.umn.edu/~AerospaceControl/

Sudip K. Mazumder (F’16–SM’03) received the
M.S. degree in electrical power engineering from
the Rensselaer Polytechnic Institute, Troy, NY, USA,
in 1993, and the Ph.D. degree in electrical and
computer engineering from the Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA,
in 2001.

He is currently a Professor with the Department
of Electrical and Computer Engineering, University
of Illinois at Chicago (UIC), Chicago, IL, USA,
and the Director of the Laboratory for Energy

and Switching-Electronics Systems. He has over 24 years of professional
experience and has held R&D and design positions in leading industrial
organizations and has served as a Technical Consultant for several industries.
He also serves as the President of NextWatt LLC, Hoffman Estates, IL,
USA, a small business organization that he setup in 2008. He has presented
75 invited/plenary/keynote presentations and holds eight issued patents with
several pending. He has authored over 200 refereed papers in prestigious
journals and conferences and has authored one book and nine book chapters.

Dr. Mazumder has been awarded about 40 sponsored projects by NSF, DOE,
ONR, CEC, EPA, AFRL, NASA, ARPA-E, NAVSEA, and multiple leading
industries in above-referenced areas, since joining UIC. In 2013, he was
a recipient of the University of Illinois’ Highest Award–University Scholar
Award. In 2014, he was a recipient of the Inventor of the Year Award at
UIC. He was a recipient of the NSF Career Award in 2003, the ONR Young
Investigator Award in 2005, and the PELS Transaction Prize Paper Award in
2002. Since 2015, he has served as the Chair for the IEEE Power Electronics
Society (PELS) Technical Committee on Sustainable Energy Systems. Since
2016, he has served as a Distinguished Lecturer for the IEEE PELS.

Eduardo Pilo de la Fuente (SM’15) received the
Ph.D. degree from the Engineering School, Univer-
sidad Pontificia Comillas, Madrid, Spain, in 2003.

He served as a Researcher with the Institute for
Research in Technology (Comillas), the Railways
Group (ASF), and the Power System Modeling
Group, from 2003 to 2010. Since 2003, he has
been a Lecturer of several degrees, and master’s
and doctorate courses related to power systems and
railways. From 2010 to 2012, he was with the
Electrical Industry as a Consultant of Multitest09,

Madrid. In 2012, he founded his own company (EPRail Research and
Consulting, SL), and since then, he has been involved in providing research
and consultancy services in the field of power systems and railways. From
2013 to 2014, he was a Visiting Professor and Research Scientist with the
University of Illinois at Chicago, Chicago, IL, USA. His expertise comprises
the modeling, simulation, and analysis of railway power systems, including
their interrelations with transmission and distribution grids. He has conducted
research and consultancy for major companies/bodies in the railway and
electrical sectors, such as ADIF–the Spanish Railways Infrastructure Manager,
Renfe, SEMI, Cobra, Gas Natural Fenosa, Iberdrola, Eon, Red Eléctrica de
España, and Bombardier, and public bodies (the Spanish Railway Foundation,
the Ministry of Public Works, and the European Commission). He has co-
authored over 38 journal and conference articles and book chapters in this
field.




