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Modeling and Control of Systems with Active
Singularities Under Energy Constraints:
Single- and Multi-Impact Sequences
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Abstract—A controller synthesis setting for systems with controlled sin-
gularities under incomplete information is extended to the cases charac-
terized by a constraint on the total physical impulse as well as on the time
interval between the adjacent engagement phases. The use of this setting for
the optimal control law calculation is illustrated on the ball/racket system
representative of a large class of controlled impact problems, where there
are two separate bodies interacting through controlled viscoelastic force.

Index Terms—Control over observations, controlled singularities, energy
constraints, impulse control, mechanical systems.

I. INTRODUCTION

Dynamical systems with active, or controlled, singularities is a new
class of systems [1] characterized by the presence of active, or con-
trolled, constraints capable of radically changing the attainability set of
the post-impact system state. The engagement phase of the system with
such constraint is termed active singularity, and the system motion in
the domain of constraint violation—the singular motion phase. Based
on these concepts, the corresponding rigorous technique for modeling
and controller synthesis for systems with active singularities of elastic

Manuscript received March 07, 2010; revised September 02, 2010; accepted
January 25, 2012. Date of publication February 03, 2012; date of current version
June 22, 2012. This work was supported by the U.S. National Science Foun-
dation under Grants ECS-0501407 and DMI-0900138, by Australian Research
Council Grant DP0988685, and by the Russian Foundation for Basic Research
under grants 10-08-01070-a, 10-01-00710. Recommended by Associate Editor
H. Ito.

J. Bentsman is with Department of Mechanical Science and Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail:
jbentsma@illinois.edu).

B. M. Miller is with the School of Mathematical Sciences, Monash Univer-
sity, Clayton, 3800, Vic., Australia and also with the Institute for Information
Transmission Problems, Moscow, Russia (e-mail: boris.miller@sci.monash.
edu.au).

E. Y. Rubinovich is with the Institute of Control Sciences, Moscow 117997,
Russia (e-mail: rubinvch@ipu.rssi.ru).

S. K. Mazumder is with the Department of Electrical and Computer Engi-
neering, University of Illinois at Chicago, Chicago, IL 60607 USA (e-mail:
mazumder @ece.uic.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2012.2186401

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012

type under full state accessibility was developed in [1]. [2] extended
the setting of [1] to admit an incomplete observation in the singular
motion phase. To accommodate the output feedback optimal controller
synthesis in the singular phase, [2] introduced the novel dynamic mode
of system interaction with the constraints, termed temporal multi-im-
pact, characterized by the very short duration isolated set of temporally
sequenced control signals. This mode was shown to vastly increase at-
tainability set of the post-temporal-multi-impact system state in com-
parison to the single-impact mode considered in [1]. To adequately rep-
resent temporal multi-impact, [2] also introduced a new mode of system
behavior—the interlaced singular phase—an engagement phase ex-
hibited by the system under a temporal multi-impact, and generalized
the framework of [1] to encompass this mode. [2] also presented an
extensive example of calculation of the single temporal multi-impact
control laws for the open loop and the observation-based optimal ball
stopping in an elastic ball/racket system.

Practical realization of controlled singularities [1], [2] in a number of
systems is, however, characterized by a constraint on the total physical
impulse that accounts for the energy depletion during an engagement
phase, as well as on the time interval between adjacent engagement
phases to secure the energy recovery. The optimization problem that
arises in this case is fundamentally different from the magnitude con-
straint one considered in [2]. Integrating the material given in [3] and
[4] into a succinct presentation, this paper extends the framework of [1]
and [2] to permit the design of the observations-based optimal control
laws under energy constraints. The latter are shown on a rather non-
trivial ball/racket system example to require the single-impact and/or
the temporal multi-impact finite control sequences to attain the desired
control objective. The applications that stand to benefit from controller
design for this case include, among others, power systems under faults
and ultra-fast microgrids [8], mobile sensor networks, impact actuators
[10], and robotic manipulators [5]-[7], [9].

II. GENERAL PROBLEM STATEMENT

Motion in the Regular and the Singular Phases: Let the
controlled dynamical system be described by the state vector
z(t) = (2p(t), 2o (t)), z,(t) € R™, x,(t) € R", where vectors z,
and z, are referred to as the sets of generalized positions and gener-
alized velocities, respectively, and ¢ € [0,T], where T is sufficiently
large.

Suppose that system motion includes interaction with constraint that
undergoes the elastic deformation parametrized by some coefficient
i > 0, so that for finite p the constraint would admit a system mo-
tion, although inhibited, within the domain occupied by it. Let the
constraint-free domain be given by {(xp,¢) : G(ap,t) > 0} where
G : R" x [0,T] — R is a sufficiently smooth function. Following
[1], the system motions in the domain occupied by the constraint and
in the constraint-free domain will be referred to as the singular and the
constraint-free motion phases, respectively.

Let the system motion be described by a system

Ep(O)=F, (xp(t), 2o (1), 1), 2o () = Fy (xp (1), w0 (t), u(t), )
FuFS (y (1), o (1), wh (€.8). £, ) T{t: G, (£), 1)<0}
U F] (o (£), w0 (), wh (€, 1), 1) M

where u(t) € U C R’ is a generalized control in the constraint-free
phase that is unbounded in R", but restricted in the integral sense:
fol lu(®)|dt < M < oo, M = const, F(xp, 2y, u,t) and
F/(xp,v0,u,t) are the generalized forces in the constraint-free
phase, wi (£, t) is an external control signal in the singular phase,
wES (wp, wy, wi (€,1),¢, 1) is a generalized controlled force in the

0018-9286/$31.00 © 2012 IEEE
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singular phase that includes the force arising from a contact with the
constraint in the inhibited area as well as from the external impulse,
WE (2, Ty, wh (€, €),¢, 1) is an additional generalized controlled
force (impulse action) in the constraint-free phase governed by a
control signal w} (€,t) (a measurable function), and ¢ is the sensor
output signal, where I{t : G(z,(t),t) < 0} is the indicator function
of the appropriate set.

The first of the latter two forces, uF; (p, 2v, wi (€, t),, ), is char-
acterized by

F; (wp, v, wi t,p) =0, if 1) G(ap, t) >0
or 2) G(ap,t) = 0 and
d 1 r
—|  G(ap,t) :G;zP(a:p,t)F,, (Tp, To, t)

dt

Ty

Gl (epat) =0 @

where G;:p and G} denote partial derivatives with respect to xp and
t, respectively, and (d/dt)|py G(xp, 1) denotes the time derivative of
G(xp, t) along the trajectories of &, (t) = F,, (, (1), x,(t), ). Noting
that G(xp, t) does not depend on ., the last expression in (2) is seen
to represent the time derivative of G(z:,, t) along the trajectories of the
entire system (1).

The force wFy*(ap, o, wh (&, t),t, 1), the last of the forces
in (1), characterizes an external impulsive action on the system
in the constrained-free domain during the so-called inter-singular
motion formally defined in [2], p. 1748, and satisfies the condition
E (v, vy, wh t,0) = 0, if G(x,,¢) < 0. The introduction of this
force lays the groundwork for addressing optimal control problems
with complex temporal multi-impact structure. Whether or not the
temporal multi-impact will appear depends on the specific features of
the problem at hand.

Sensor Equations, Constraints, and General Problem Statement:
Let in the singular phase, when G(x,(t),t) < 0, components of the
state vector (x,(t), z.(¢)) be unobservable directly, and it be possible
to observe only the sensor output signal £(¢) € R* that is assumed to
satisfy the equation

£(t) = /lH (I’P(t)v#’:v(t)?t,ﬂ/l) 3

where H(xp, 1y, t, 1) = 0if G(xp,t) > 0. Then, the control signals
wi'(&,t) and wh (&, t) can be taken to be continuous functionals of the
sensor output signal £(¢) and measurable in time (cf. Definition 1 of
[2]). Let the motion in the singular phase begin at 7, where 7 is the first
instant when

d
G (xp(1),7) =0 and T

G(.TI,;(T),'T) <0. 4)

£y

Denoting by v any of the control signals w, w2, define its depen-
dence on ¢ and p in the singular (interlaced singular) phase as

P(E,8) = {”” (€ vt =m). t 2, )

0, otherwise.

It is assumed that the right-hand sides of (1)—(3) are sufficiently
smooth to guarantee unique solution of (1)—(3) for any admissible con-
trols.

Assume that force F} (x,(t),z,(t),u(t),t) in the regular phase
takes the form of an impulsive force F), (1 )6(t — t1.), satisfying

[Fy (te)| < Fo (6)
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where Fp is given. The instants ¢, k = 1,2, . . ., of the impulse actions
are assumed to satisfy the monotonicity condition 7 = #; < #; <
to < ... and the explicit restrictions on the impulse repetition rate of
the form

Ty <tp —tr—1 @)

where T} are the given nonnegative constants that represent limitations
of control capability in the regular phase.

Let F(w! (&, t), 1) be part of uF,(x,, o, wi (€, t),t, 1) repre-
senting the external force acting in a singular phase. In contrast to
[1] and [2], let physically motivated restrictions be specified as the
constraint on the total external impulse

FHE
i

[ IFwtenmli<c. ®

L
TH
i

acting in an ¢-th singular phase, and constraint
Ty <t — 1} )

on the time interval between the end of the singular phase and the next
impulse in the regular phase. Here, C; are given constants and [/, 7/""]
is an ¢-th singular phase time interval.

The present work addresses two general objectives: 1) controller
synthesis setting objective: provide an analytical setting that permits
reduction of an ill-posed problem of synthesis of the singular phase
control signals wi (£,¢) and w4 (&,¢) in (1)~(3) under constraints
(6)-(9) to a well-posed two-step approximation procedure: a) syn-
thesis of bounded singular phase control signals w1 (7, s) and w2 (7, 5)
in the auxiliary fictitious time s with sensor data 7(s) under these
constraints, and b) calculation of w! (¢, t) and w (¢, t) implementable
in the original system (1)—(3) using signals synthesized in a); 2) limit
modeling objective: obtain a model that generates a discontinuous
motion controlled by w1 (7, ) and w2 (7, -) representing a consistent
approximation of motion of (1) controlled by w{ (£, ) and wh (£, ¢).
Tasks a) and b) of 1) can be viewed as the direct and the converse ones,
respectively. These objectives for a single impact are addressed by
Theorem 1 and for a temporal multi-impact sequence—by Theorem 2.

III. EXAMPLE

Assume that the racket of mass M and the ball are moving under
zero gravity along the horizontal axis with constant speeds for t < 7,
where 7 is the first impact time. The lack of gravity assumption only
trivially alters the system behavior.

This system has the state vector X = (w,, 2., X,,X,), where
xp, &, and Xp, X, are the positions and the velocities of the ball and
the racket, respectively. The area free of constraint is described by the
inequality G(X) = z, — X,, > 0. In the example considered in [2] the
regular motion phase control signal «(¢) was not invoked. In contrast to
this, in the present example it is assumed that during the regular phase
the racket can be subject to an impulsive force F" (¢4 ), satisfying (6).
The instants ¢, k = 1,2,..., of the impulse actions are assumed to
satisfy the monotonicity condition 7 = to < t; < t2 < ... and the
restriction (7). In the regular phase the equations of motion have the
form

ip(t) = au(t), er (t) = Xu(t)
do(t) =0, X, (t)=M~" )" F'(t)6(t — ti).

t <t

(10)
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racket

Fig. 1. Singular motion phase: motion in the inhibited domain.

Here 6(-) is a Dirac §-function.
In the inhibited area, depicted in Fig. 1, the motion is described by
the equations

dp(t) = wp(t), @u(t) = —p P (X (), 1), X,p(t) = Xo(t)
Xo(t) =M™ [F(t,p) + pF (X(1),0)] - (11)
In (11) pF7 (X (t), 1) is a viscoelastic force during the contact of the
ball and the racket. This force, described by F,* (X (¢), 1) = x,(¢) —
X, (t) + 2rp~ (0 (t) — X,(t)), appears in both the ball and the
racket velocity equations with the opposite signs. The force F(¢, it)
could be interpreted as an external control force acting on the racket in
the singular phase. This force admits the representation

F(t.1) = Jfiw (it = 7).

Here ;¢ > 0 is the elasticity coefficient, 0 < x < 1 is the damping, and
w(-) is a control variable satisfying the constraint

t> 1. (12)

lw ()] < wo < oo. (13)
In contrast to [2], there is the constraint on total external impulse (8),
acting on the racket in an i-th singular phase, and constraint (9) on the
time interval between the end of the singular phase and the next impulse
in the regular phase.

Suppose a player (or robot) has the capability of measuring the pres-
sure on the racket during the contact phase. This implies that the sensor
output signal £(¢) is equal to the viscoelastic force acting on the racket

§0 = p [2,(6) = Xt + 207 P (o) - Xo0)| . (4)
Equations (10)—(14) describe the motion in the case of i < oc.

System (11), (12) is easily recast into (1) by defining x,, and x, of
(1) as two-vectors [xp1, 2p2] T and [e1, 2va]T given by [p, X ]T and
[, X,]7, respectively. The functions F;, F7, pF?, and nF.* in the
rhs of (1) are then simply given in terms of functlons /.lF W, Fyand F'°
defined in (11), (12), as for example, shown by expressions (29)—(31),
p- 1747, in [2].

As indicated in  above subsection in this  case
Fl*(wp, wo, wh (€, )., 1) = 0, so that control ws in (5) is absent.

Infinitesimal Dynamics Equation Under a Single Impact: Ac-
cording to (4), the singular motion phase begins at the first time 7
that the system engages the constraint. Therefore, for a finite value
of o there exists a non-zero time interval of the constraint violation.
Theorem given next provides analytical setting for optimal controller
synthesis under constraints.
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Assumption 1: Suppose that F; (analogously F,* and H) satisfies
the Lipschitz condition in the following form: there exist L > 0, po >
0 such that for any (p, Ty, T, rv) t € [0 T),wy € Wi,and p >
po, IS G w1 ) = B (2} w1 )| Ly =)l
w2y — 2},

Theorem 1: Along with Assumption 1, let (x5 (), 24 (¢)) denote
the ordinary solution of the original system (1) where a superscript p
is used to indicate dependence of this solution on parameter y. Denote
t'(s) = 7 + = /%5 and assume that:

1) for any admissible controls w; and for any (x,,7) such that

G(xp,7) = 0and (d/dt)|wr G(ap(7), 7) < O there exists

. s (Yp — Tp B\ gk
hm VI E; ( + Tpy Yo, w1 (n', ), 8 (s), 1
T ; ;

F (Yps Yo, w1(1, 8), 2p, T)
Up_ “p
hm H< + @p, Yo, (),
R

= H(yvawva) (15)

where convergence is uniform in any bounded vicinity of
(Ups Yo, 70, 5);
2) for the system of differential equations
ip(s) =Fp (ap(7), yo(s).7)
§o(s) = F (yp(s), 9o (s), wl(m 1), 2p(7), )
1(s) =H (yo(s),2,(7)

with y,(0) = 2,(7), ¥u(0) = 2,(7—), n(0) = &(7) there exists
s*(7), such that s*(7) = inf,ca s

(16)

G, s+Gh,
(ry(.7) (rr1)
X (yp(s) — (7)) =0

s>0:

’
Gy

a7

+G.,
(#p(r):7) (zp(7).7)
XFP7 (:UP(‘—)ﬂyU(S)vT) > 0 7/

and the systems has the unique solution on some interval
[0,s"(7) + £], where = > 0.
Also define ¥, (-) as a v-component of the shift operator along the
paths of (16) (cf. (28)—(32) of [1]) so that

Yo (57(7)) = 42(0) + ¥ ((0),4(0), w1 (-), 7)

where w1, (-) = {wi(n,s) : 0 < s < s7(7)}.
Then
i) if g — oo

(b (), 9 (5), 0" (5)) —

).n(s)) (18)

(p(8), yu(s

uniformly on [0, s*(7) + <], and for all sufficiently large ; there
exists sy, (1) = infsean, s

G (xp (t(s)) . 1"(s)) = 0

2 .
;4,‘,— 8>0 dd_&, G(l’p tu )) t“( )>0 (19)
4
such that
S;('T) — §7(1); (20)

ii) the generalized solution (Z,(t),Z.(t),(t)) of the original
system (1), (3) is a pointwise limit of its ordinary solution as
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1 — oo, and satisfies on an interval [0, 7 + €] the system of
generalized differential equations

-%p(t) = F1; (-’fp(t)a i‘,,(t), t) P -%v(t) = FL’ (fn(t)~ 'i"(t)v 'u(t), t)
F W (2 (7). BT = ) wn (). 7) Bt = 7)
E(t) =H (Tp(t), o (1), 1) 1)
with 2,(0) = 2,(0), 2,(0) =
To(T—) = ao(7—); B
iii) iii) for any solution (i, (%), Z.(t), {(t)) of the system (21) gen-
erated by some admissible controls u(¢), w1y (-) there exists a
sequence of solutions (x5 (t), 24 (t),£"(t)) of the system (1),

(3) generated by controls

u'(t) = {u(t),

any admissible,

tef0,7],
t>T
wii(6.1) = { o (&S T))tE [nr ] )
any admissible, otherwise
where t;, = min{s"(7)/\/it, s.(7)//It}, which pointwise
converge to (Zp(t),Z.(t),&(t)) on an interval [0, 7 + ¢] as
L — 00.
The extension of Theorem 1 to the single-impact sequence case can
be carried out following Theorems 3 and 6 of [1] and is omitted.
Singular Phase Description—Equations of Infinitesimal Dynamics:
The modeling objective is to obtain the velocity jump representation
corresponding to the limit motion as y# — oo. The control objective
is to find an impulsive control law which minimizes the velocity of
the ball bounce after the impact. Applying transformation (9) of [2]
to system (10)—(14), (16) in the new variables (y,, Yo, ¥, Yy, 7), de-
scribing the motion in the stretched space-time scale, takes the form

Up(s) =wu(s), Yp('s) =Yu(s)
Gu(5) = = p(s) + Yp(s) — 21a(s) + 2672 (5)
Yi(s) = M~" (w(s) + yp(s) — Yy(5) + 2 (yo(s) — Yu(5)))

n(s) =yp(s) = Yu(s) + 25 (yu(s) — Yo(s)) (23)
with the initial conditions

Yp(0) =Y,(0) =0, y.(0) = 2,(1—),

yrl’(()) :XU(T_)= 77(0) =2k (-TU(T_) - Xv("__)) . (24)

To address the modeling and the control objectives, introduce the rel-
ative coordinates ¢(s) = (4p(5).u(5)): go(s) = yp(s) = Yp(s),
4o(s) = yu(s) — Yu(s), and let h(s) = M~ w(s). Then, (23) takes
the form

() = qu(5). 4u(s) = —h(s) — agy(s) — 2axq,(s)
Ju(s) = — qp(5) — 26q.(s) = —n(s) (25)
wherea = 1+ M™", ¢,(0) = 0, ¢,(0) = z,(7=) — X.(r=) < 0,
and 7(0) = 2kg¢.(0).

Optimal Control Problem: System Constraints: Suppose the vis-
coelastic force is characterized by the so-called restitution (repulsive)
property ([1, III-B, p. 48]), i.e. guarantees the repulsion of the ball from
the inhibited domain in a finite time without an external force. This
means that the rebound conditions
(26)

p(s") =0, Gp(s") =qu(s") > 0.
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take place at the instant s* —the time moment, in the fast time s, of the
limit system (25) exit from the constraint—given by (17). In this case,
system (25) admits an explicit solution

s

N s sin(ws) [ e sinw(s—s') .,
ap(s)=¢e 4v(0) — [ e —————=Nh(s')ds

@ @

0

@n

where A = ka, w? = a — A% > 0, and, hence, the restitution condition
gives a? > k.

In new notations the constraints (13), (8) take the form
where ho = _Mfl'wo

[R(-)| < ho < o0, (28)

/ |h(s)|ds <¢, with c¢= M "C. (29)
0

The Control Objective: The control objective is to reduce the ball
velocity at an instant s*. Therefore, it is natural to take as a performance
criterion

yo(s™) — min. (30)
Without restrictions (7) in the regular motion phase and (29) in the
singular one, this problem is solved in [2] with the help of Pontrjagin’s
maximum principle. In that case, an optimal control has the form of
a single impulse or a single temporal multi-impact depending on the
initial conditions and a mass M of the racket. Restrictions (7), (29)
cardinally change the structure of the optimal control, giving rise to
the single-impact or the temporal multi-impact sequences.

Note, that if the constant ¢ in (29) is sufficiently large, an optimal
control will always satisfy the strict inequality (29), reducing the solu-
tion to that of the example in [2]. For this reason, we will consider the
case when the constant ¢ is such that

/ [h(s)|ds = ¢ < hos™. @31
0

Control Law Synthesis: To transfer the problem to the form that has
no explicit restriction (31) and admits application of Pontrjagin’s max-
imum principle in its classical form, introduce a new auxiliary variable
z(s) in terms of an equation Z(s) = |h(s)|, z(0) = 0, with the ter-
minal condition
(32)

z(s") =c.

For the optimal control problem (25)—(32), the Hamiltonian
H = H(gp, Gus Yv» 2y Vpy Vo, Py, V=, h) takes the form

H = Ypqo — Voh — (a)y + ¥y ) (gp + 26¢w) + . |h| — max. (33)
The adjoint system is given by

Up(s) = ay(s) + vy (s), u(s) = —tp(s) + 2artu(s)
+ 2r1y(s), L’y (s) =0, i.e. ¢y = Cy = const,

w;(s) =0, i.e. . = C. = const. (34)
The terminal transversality conditions at s = s™ take the form
2900y +1p0qp + 10 0q0 + 1y 0y + 1. 02 —Hbs =0 35)
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where dg, = 0 and 6z = 0 due to conditions (26) and (32), respec-
tively. This yields

29,(s") + Cy = 0, ¥u(s™) = 0, H(s") = 0. (36)
Then, H(s™) = 0 implies
Vp(s") — 2Cy = 0. (37)

Relations (36), (37) give the terminal conditions for (34) of adjoint
variables ., (s), 1, (s) that determine the optimal control signal and
may be easily integrated backwards in time.

The application of the Pontrjagin’s technique to the system anal-
ogous to (34), (35) is considered in detail in [2]. The main differ-
ence between the present case and that of [2] is that in [2] an op-
timal control 7 maximizes a linear function f (k) = —1uh, so that
h(s) = —hosign (¢, (s)), whereas in the present case an optimal con-
trol © maximizes a piecewise-linear function

f(h) = kh — |h| — max (38)
where k = k(s) = ¢, (s)/C>, with C. < 0. It then follows from (38)
that

ho, k(s)>1
h(s)y=1< 0, k(s)€[-1,1] (39)
—ho,  k(s) < —1.

It should be noted that for some initial conditions it is possible not
just to minimize a rebound velocity but to bring the ball to a full stop.
In the latter case, the optimal control problem stated above becomes
degenerate due to the appearance of an additional terminal condition
Y. (5*) = 0. Indeed, as it follows from (36), (37), this condition gives
Cy = ¥,(s*) = 0 and ¥, (s*) = 0, leading to the trivial solution of
the adjoint system (34). Considering therefore an alternative criterion,
it is natural to take minimization of the terminal time:

*
s

/ Crds — min, C} > 0 any constant.

0

(40)

Hamiltonian, maximum principle, and an optimal control law retain the
same form (33), (39), (34) for the new time-optimal control problem
(25), (26), y»(s*) = 0, (40). But due to y,(s*) = 0 and (40), the
transversality conditions take the form ¢, (s*) = 0, H(s*) = Cj.
As above, these conditions permit obtaining the boundary conditions
for integrating the system (34) backwards in time and calculating the
control mode switching function %(s) in (39).

The constraint (8) is shown below to give rise to the single-impulse
sequence for the sufficiently small C5, irrespectively of the value of T},.
This sequence turns into the temporal multi-impact sequence when the
size of the constraint is increased. When the constraint exceeds certain
bound, essentially rendering the system unconstrained, the sequence
could be shown to reduce to a single temporal multi-impact case given
in [2].

Unconstrained External Mechanical Impulse: In system (23)—(25)
with the parameters and the initial data as in the example in [2] (@ =
2,5 = 0.25, hg = 0.3, ¢(0) = 0, ¢.(0) = —0.0822, y,(0) =
—0.3329, Y,,(0) = —0.2507) the ball could be stopped by a single
double-impact control with impulses p1 = wos and p2 = —wo(s* —
5), where s = s1 = 1.871 and s* = s = 2.835.

Constrained External Mechanical Impulse: Now, introduce con-
straints (8) with C' = 0.3 (7). Under the aforementioned initial con-
ditions of the example in [2] the latter implies that in (31) ¢ = 0.3
as well. In this case, the maximum permissible external impulse p =
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Fig.2. Control mode switching function k and the peace-wise constant optimal
control h that stops the ball.

wos1 = Mhosi = 0.3 corresponding to the step-wise optimal control

law
~ N ho,
h(s) = {0,

where s; = 1, does not stop the ball. The racket in this case is moving
away from the ball with the relative velocity ¢, (s*) = 0.10414. Here
the terminal instant s* = so = 2.823 and the terminal values of the
absolute velocities of the ball and the racket are equal to y.(s*) =
—0.089753 and Y, (s™) = —0.1939, respectively. The step ho, s <
51, of the optimal control (41) is located at the beginning of the control
time interval [0, s2]. Such location maximizes the work of the external
force on a ball/racket system and hence minimizes the absolute velocity
of the ball. For finite p transformation (9) of [2] leads to the system (25)
directly, yielding the exact optimal solution.

1) Ball/Racket System Under a Single-Impact Sequence: Let in (6)
Fy = 0.2andin (7) Ty, = T = 1 for any k. Then, after time T the
racket undergoes impulsive action F = 0.2 that generates a jump of
the racket velocity AY, = 0.2. Therefore, new racket velocity takes
the value Y,, = 0.0061 in a positive direction. Relative closing speed
between the ball and the racket becomes ¢, = y, — Y, = —0.09585.
After the second collision the ball could be stopped with the help of
a single double-impulse control with impulses p1 = wos; and p2 =
—UJo(Sg - 5‘2), where 517 = 0.34, so = 0.92, s3 = 1.54. In the
singular phase, the piece-wise constant control law corresponding to
these impulses is depicted in Fig. 2. Due to the profile of the control
mode switching function k(s), optimal control (s) undergoes jumps
at instants si, s2, s3. Stopping time is calculated to be s* = s4 =
1.664.

Remark 1: This dependence can be applied as a function of pressure
measurable by a built into the racket pressure sensor.

2) Temporal Multi-Impact Sequences: In the case of the single tem-
poral multi-impact, Fy,°(xp, xv, wh (€, 1), ¢, ) # 0 and the infinites-
imal dynamics equation is given by (41) of [2]. This admits natural
generalization of the single temporal multi-impact Theorems 2 and 3
of [2] to the temporal multi-impact sequences given next.

Limit System Representation and Control Law Implementation
Under a Temporal Multi-Impact Sequence: The sequence {7},
1,..., N, is defined as that in (34) of [1]. But the double

sequence {7/, 7/"}, 1 = 1,...,N, splits into N finite series

5 < 81 (41)

$ 2> 81

T
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Fig. 3. Variation of ¢,, ¢, and y, in the inhibited domain in the case of the
first singular phase under constant control » = hy = 0.3.
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T, = Th < Th ST < Ty << Ty < Ty =T
oo —1/2, (K nx o __ —1/2 * Iz

where T =T sui (7)), T = T, tp -5;1,7(7'7: ),

j = 1,....N,. Here each series corresponds to one temporal

multi-impact.

Theorem 2: Let (z,(t),Zz.(t)),t € [0,7], be a solution
of the system (39) of [I] with shift operators replaced by
U, (yp(0), yu(0), w1+(-), w2r(-),7) under some admissible con-
trols w, wy, and wz. Then, if 4 — oo, the corresponding sequence
of ordinary solutions (x4 (t), 2% (¢)) of the system (1) with the same
control signals u(t),t € [0,T], and v*(&, 1) = (&, /u(t — 7)),
t € [r/',7/'"], converges everywhere on [0, T'], except, possibly, at
the points {7; }, to the general solution (%, (%), Z,(¢)) of the modified
system (39) of [1]. Here v is any of the controls w; and w2 which,
generally, admit an extension in the neighborhood of the points 7/**.

Ball/Racket System Under Constraint on Impulse. Constrained Tem-
poral Multi-Impact: Now consider the case of a light racket (M = 1/3
and hence @ = 1 + 1/M = 4), which moves towards the ball with
a higher initial relative velocity ¢, (0) = —7.5. The other parame-
ters and initial conditions of the model are x = 0.25, ho = 0.3,
4p(0) = 0, y.(0) = —4.1322,Y,(0) = 3.3678, C = 0.9725, hence
¢ = C/M = 2.9175. C is now seen to be more then three times
greater than that in the previous example. Then, considering motion
on 0 < 51 < s2 < s3 < s4 < oc. Fig. 3 illustrates this case. In
the interval [0, s1] the external control action is i(s) = ho = 0.3. In
this interval the ball moves inside the racket. At time s; the ball and
the racket disengage and during the time interval [s1, s2] they move
separately: the ball—with a constant speed y(s) = y(s1) = const
in the constraint-free domain and the racket—with a linear increasing
speed Y (s) = y(s1) — ¢(s) under a constant external control action
h(s) = ho = 0.3. The latter action generates the force applied to
the racket outside of the contact phase. To distinguish this force from
the ones acting in the singular, or contact, phases of the optimal force
sequence, it will be further denoted as F'"*, and the motion phase cor-
responding to it will be referred to as the intersingular. At time s2 the
racket collides with the ball once again. During the time interval [s2, 54]
the ball moves inside the racket. At time s3 the optimal control equals
zero due to impulse depletion—manifestation of the constraint (8) on
the admissible impulse depending on the constant C'. Finally, at time
s4 the ball and the racket are moving away, with nonzero ball velocity.
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The force F"*® is a part of the optimal force sequence, further referred
to as the temporal multi-impact, that induces contact and non-contact
phases on the time interval cumulatively going to zero as p — oo.
Since the corresponding motion is characterized by contact interrup-
tion, yet its total duration tends to zero as pt — oo, it is further referred
to as the interlaced singular phase.

Temporal Multi-Impact Sequence: The initial absolute velocity of
the ball exiting the first temporal multi-impact is y, = —1.4802. Ap-
plying after time 7}, = 1" = 1 the impulsive action ¥, = 1.14 gener-
ates a jump of the racket velocity AY,, = 3.4177. Therefore, the new
racket velocity takes the value Y, = 1.7493 in the positive direction
and the relative closing speed between the ball and the racket becomes
o = Yo — Y, = —3.2302. Now, as shown in ([2], p. 1745), the ball
could be stopped by a single temporal multi-impact control with im-
pulses p1 = wos3 = 0.90766 and p2 = —wo(s4 — s3) = —0.06484,
where 53 = 9.0766, 54 = 55 = 9.725, and wo = Muo = 0.1,
without violating constraint (8).
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