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Abstract—In this paper, a hierarchical distributed energy

Q1

5
management of multimicrogrids (MMGs) with energy rout-6
ing is proposed. Existing control strategies for power shar-7
ing, transient performance, and economic-emission dis-8
patch in microgrids with distributed generators (DGs) fall9
short in providing good dynamic performance. To address10
this issue, a hierarchical distributed optimization is pro-11
posed by using top–down approach, which decomposes12
original economic-emission dispatch of MMG scenario into13
individual microgrid (MG) and energy routing subproblems.14
Distributed electric vehicle charging, intermittent photo-15
voltaic source, and battery energy storage system are in-16
corporated in the optimization model. Using multiagent sys-17
tem model for DG, a dynamic performance controller (DPC)18
is proposed for each MG to achieve improved performance19
during transients. Convergence of optimization algorithm is20
proved using Lyapunov theory. Performance evaluation re-21
sults show that the proposed DPC for economic-emission22
dispatch improves system performance significantly during23
either load or generator switching.24

Index Terms—Distributed generation, dynamic perfor-25
mance, energy router, economic-emission dispatch, mul-26
tiagent system (MAS).27

I. INTRODUCTION28

ENVIRONMENTAL concerns and anticipated global en-29

ergy crisis have accelerated efforts to increase reliability30

and improve economic efficiency of power systems. As a re-31

sult, more and more renewable energy sources are being inte-

Q2

32

grated, resulting in reduced carbon emissions. Particularly, the33
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use of photovoltaic (PV) systems, battery energy storage sys- 34

tems (BESS), wind turbines, and fuel cells, etc., has emerged as 35

an attractive solution to meet energy demands of a small com- 36

munity in a distributed manner giving birth to community MGs. 37

These MGs are becoming integral part of today’s power system 38

infrastructure giving birth to cluster of MGs or multimicrogrids 39

(MMGs) [1]–[4] for distributed energy management. 40

An MG typically is a low-voltage power distribution network 41

comprising of different distributed generators (DGs), control- 42

lable electric loads, and energy storage devices. MGs can op- 43

erate both in islanded as well as grid-connected modes [5]. A 44

DG refers to a small power generation unit, which usually has 45

capacity of few megawatt. The DGs in an MG can communicate 46

with each other through a suitably designed communication net- 47

work for optimal power sharing, energy state monitoring, and 48

distributed control. In recent years, the increased penetration 49

of these MGs has posed additional requirements and challenges 50

for power system operators, such as dynamic economic dispatch 51

(DED), efficient control of transients in case of source-load fluc- 52

tuations, and power quality among many others. 53

Economic dispatch is commonly defined as the process of de- 54

termining the optimal generation cost and meeting load demands 55

along with operational constraints. Different solutions have been 56

proposed for ED, such as DED, real-time ED (RTED), to name 57

a few. The authors in [6] have formulated DED problem as a two 58

stage primal-dual problem using Lagrangian relaxation. A pos- 59

sible extension is distributed DED that can be implemented by 60

using multiagent system (MAS) architecture [7]. A relaxation of 61

economic dispatch (RED) problem using distributed Laplacian 62

based first-order dynamics is discussed in [8]. A key limita- 63

tion of the above-mentioned ED solution approaches is inferior 64

dynamic performance in case of load or source transients. 65

Conventionally, the ED problem for traditional power systems 66

is performed on a slower time scale (see Fig. 1) independent of 67

automatic generation control (AGC) that is performed at faster 68

time scale. In case of an MG, load demand uncertainties as 69

well as the number of renewable sources are on the rise, which 70

result in frequent source-load transients as well as larger power 71

fluctuations. This demands for faster ED to not only improve the 72

economical efficiency of the system but also to bridge the time 73

gap between ED and AGC [9]. The authors in [10] have proposed 74

to integrate AGC and ED for real-time optimization, where 75

ED in the feedback loop is activated at discrete time instants. 76
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Fig. 1. Time scale of resource scheduler, ED and AGC.

However, this solution suffers from poor dynamic performance77

due to ED activation at slower time scale.78

DED that can respond to fast fluctuations in the generation as79

well as load demand [11], for interconnected MGs [12], is there-80

fore highly desirable to optimize energy management, control81

energy flow among MGs and ensure supply–demand balance82

[13]. To meet these objectives, conventional primal-dual algo-83

rithm based ED is extended in this paper to an augmented La-84

grangian based dynamic control allowing the implementation of85

a dynamic performance controller (DPC). A hierarchical design86

involving multiagent system (MAS) based MG control architec-87

ture and energy router based inter-MG power flow control, is88

proposed for energy management in MMG scenario. Tradition-89

ally, multiagent-based architecture converges to average consen-90

sus [14], which effectively leads to equal load sharing among91

DGs in an MG, which may lead to poor economic efficiency.92

To address this limitation, a relaxation of consensus constraint93

is introduced. The proposed approach is equally useful for grid94

connected as well as islanded modes of operation. However, it is95

more effective for islanded mode of operation, since transients96

can be more pronounced in that case. Key contributions of this97

paper are summarized below.98

1) Optimization problem formulation as hierarchical dis-99

tributed optimization for MMGs using augmented La-100

grangian based control algorithm for single MG to im-101

prove dynamic performance.102

2) Multiagent communication system architecture for MG103

and energy router for controlling inter-MG power flow104

for MMGs.105

3) Optimal power sharing among DGs integrated with re-106

newable energy sources and distributed charging loads,107

such as electric vehicle (EV) along with economic-108

emission dispatch.109

The paper is organized as follows. In Section II-A, MMG sys-110

tem architecture is outlined. This section also provides commu-111

nication framework using multiagents. Optimization problem112

formulation for hierarchical distributed optimization for MMGs113

with energy routers is presented in Section III. The problem is 114

further decomposed into multiple subproblems for simultaneous 115

optimization. An augmented Lagrangian based optimized con- 116

trol is provided for an MG with renewable and nonrenewable 117

energy sources in Section IV. Performance evaluation results 118

are provided in Section V, and conclusion in Section VI. 119

II. SYSTEM MODEL 120

The key components of an MMG system architecture include 121

the MG itself along with the devices used to create connectivity 122

among multiple MGs. Next, we discuss these two components 123

to elaborate the system model. 124

A. Single MG System Architecture 125

Each MG has certain number of DGs connected to it, which 126

are responsible for economic power sharing to meet the load 127

demand. In the present study, it is assumed that each MG has 128

traditional DGs, renewable energy sources e.g., PV panels along 129

with BESS. In addition, controllable loads are connected to each 130

MG, whose values can be configured. 131

MG employs hierarchical control strategy and uses primary 132

control to maintain operating voltage and frequency. Secondary 133

control provides active and reactive power control, which is 134

also termed as AGC, while tertiary control is used to implement 135

ED. To minimize generation cost, different DGs are operated 136

at optimal power generation point. It is assumed that the con- 137

trollers installed with the renewable sources are responsible for 138

delivering energy to the system, but they do not take part in the 139

ED. Rather the DGs with only nonrenewable energy sources 140

participate in the ED to improve the system performance during 141

transients. 142

For distributed implementation of ED in each MG, we se- 143

lect a set of N DGs and correspondingly define set N = 144

{1, 2, . . . , N}. Each DGi has an associated group of neigh- 145

boring DGs, which are denoted by the set Ni ⊂ N . The set Ni 146

includes all of the DGs that have direct communication link with 147

DGi . The communication links between any pair of DGs are as- 148

sumed to be bidirectional. This scenario can be modeled using 149

an undirected graph Gd = {N,E}, where E represents the set 150

of all communication links that exist among the DG pairs. 151

Now, for the above-mentioned graph G, define an adjacency 152

matrix A = A(Gd), with A ∈ RN×N . Each element al,m ∈ A, 153

is set equal to 1, when the link (l,m) ∈ E, that is the correspond- 154

ing communication link exists between DGl and DGm and is set 155

to 0 otherwise. If al,m = 1, then DGl and DGm are considered to 156

be adjacent to each other. Now considering the communication 157

view point, the degree dl of a generator DGl is defined as the to- 158

tal number of DGs that are adjacent to it and can be evaluated as 159

dl =
∑

m∈Nl ,m �= l al,m , ∀l. Define D ∈ RN×N as the diagonal 160

matrix with corresponding entries dl , l ∈ {1, 2, . . . , N} and is 161

termed as the degree-matrix for the graph G. Now using the ad- 162

jacency and degree matrices, one can define the graph Laplacian 163

matrix, M as M = D −A. The Laplacian matrix M has all of 164

its row sums equal to zero, i.e., M1 = 0, where 1 represents an 165

all ones vector. For proper communication among distributed 166

agents, it is assumed that the delay to transmit the parametric 167
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Fig. 2. MGs with energy routing.

information among the neighboring DGs is much lower than the168

interval required by the controller to update its output.169

B. MMG Architecture Using Energy Router170

An energy router operates at MG level and monitors, the171

power produced and consumed in each MG and can communi-172

cate with the DGs of the MGs that are connected to it. Energy173

routers are also responsible for power exchange as well as di-174

rection control of power flow between interconnected MGs.175

In a typical cluster of MGs as shown in Fig. 2, all the MGs176

are interconnected through energy routers via their power lines177

and communication interfaces. The MG DGs can communicate178

at different levels. At lower level of the hierarchy DGs commu-179

nicate with other neighboring DGs within the MG, thus forming180

the MAS architecture of the MG. At the higher level some of the181

DGs in an MG communicate to energy routers, making power182

exchange among multiple MGs possible.183

Clustered MGs with DG are prone to power fluctuations due184

to uncertainty, variability and forecast errors in renewable power185

generation. Energy routers are being deployed to compensate for186

shortage of power by injecting power from one MG to another187

MG to meet its load demand by using energy routing. A hier-188

archical structure integrating DGs in MGs with energy routers189

is shown in Fig. 2, where MG to MG power exchange via two190

energy routers is depicted.191

III. PROBLEM FORMULATION FOR MMG ARCHITECTURE192

WITH ENERGY ROUTERS193

In this section, a multiobjective optimization problem is for-194

mulated for network of MGs connected using energy routers.195

First, component of the multiobjective cost function is for196

economic-emission dispatch and is defined for each MG. Sec-197

ond, cost function accounts for PV power intermittency. Third,198

cost component captures the price of energy exchange between199

any pair of connect MGs.200

A. Economic-Emission Cost201

The ED problem is formulated as an optimization problem202

with an objective function to minimize total generation cost of203

DGs. For this purpose, a quadratic cost function Ci is defined204

as below 205
∑

i

Ci(pi) =
∑

i

αip
2
i + βipi + γi, ∀i. (1)

In (1), pi ∈ p, p ∈ RN represent the power delivered from gen- 206

erator i, while αi , βi , and γi are the generation cost coefficients 207

of the ith generator. The economic-emission dispatch problem 208

can be modeled by incorporating cost of reducing pollutant 209

emissions (e.g., reducing emissions of CO2, NOx, and SOx). 210

Among the three pollutants, NOx, CO2, and SOx, considered in 211

literature, CO2 is the most dominant. Pollutant emission cost, 212

Ei(pi), follows quadratic cost [15], [16] and is given by 213

∑

i

Ei(pi) =
∑

i

aip
2
i + bipi + ci, ∀i (2)

where a, b, and c are pollutant emission cost coefficients. Since 214

(1) and (2) are both quadratic functions, these can be combined 215

into one function by adding (1) and (2) making it an economic- 216

emission cost function as given below 217
∑

i

Di(pi) =
∑

i

Aip
2
i +Bipi + Ci, ∀i (3)

where Ai = ai + αi , Bi = bi + βi , and Ci = ci + γi are 218

economic-emission cost coefficients. 219

B. Supply–Demand Balance and Power Exchange 220

Between MGs 221

Conventional thermal generators and PV generators are con- 222

sidered in this analysis. Now, define the following parameters. 223

p
(G)
i,m : Power generated by ith DG inmth MG, 224

p
(PV)
m : PV power from mth MG, 225

p
(B )
m : Battery power from mth MG, 226

pk,m : Power flowing from kth MG tomth MG 227

and governed by energy router, 228

Ldm + L
(EV)
dm : Total load as sum of conventional load, 229

Ldm and distributed EV load, L(EV)
dm in 230

mth MG, 231∑
k pk,m −∑

j pm,j : Difference of total power received by 232

mth MG from k MGs and total power 233

delivered by mth MG to j MGs, 234

The power supply–demand balance can be written as 235

∑

i

p
(G)
i,m + p(PV)

m + p(B )
m +

⎛

⎝
∑

k

pk,m −
∑

j

pm,j

⎞

⎠

= Ldm + L
(EV)
dm , ∀m (4)

Therein, an MG can inject power into another MG, if it has 236

surplus power. It is assumed that main grid will play a role of 237

passive constant grid and will not participate in optimization. 238

All interconnected MGs will exchange power and energy router 239

will ensure this power sharing. 240

C. Cost of PV Power Intermittency 241

Distributed renewable energy resources may generate power 242

fluctuation because of uncertain generation behavior. It is 243
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TABLE I
BESS PARAMETERS

assumed that each MG will have PV power sources, whose244

power output variation will also affect power sharing among245

interconnected MGs. To account for this fact, an intermittency246

cost component is introduced in the objective function in (8a).247

The operational and maintenance costs of PV are minimal and248

are ignored. Cost function for lumped PV power, p(PV)
m in mth

Q3

249

MG can be modeled as250

Cm

(
p(PV)
m

)
= m1p

(PV)
m + εm exp

(
m2 − p(PV)

m

)
∀m (5)

where m1 > 0, m2 > 0, and εm > 0. The first term in (5) de-251

notes the direct operating cost, while the second term denotes252

the penalty on curtailment of PV power generation [17].253

D. Operational Cost of BESS254

A BESS is included and batteries are charged when buying255

price is cheaper and vice versa. Batteries are operational with256

reasonable depth of discharge and battery operational cost, Bm257

for lumped battery power, p(B )
m in mth MG is modeled as [18],258

∑

m

Bm

(
p(B )
m

)
=
∑

m

ηppm + ηc |pm | + ηlossp
2
m , ∀m (6)

where ηp and ηc are electricity price and battery cost parameter,259

respectively, and ηloss is the loss cost parameter (see Table I).260

E. Energy Router and Cost of Power Exchange261

In smart grid scenario, consumers can share and exchange262

energy-like information in the internet. The energy router is an263

emerging device concept [19]–[21] that is based on advanced264

power electronic techniques for control of energy exchange265

among MGs. Energy router in MMG scenario aims at increas-266

ing energy exchange efficiency and optimizes dispatch of energy267

between MGs.268

We have modeled cost of power exchange between MGs269

connected through energy router as a quadratic cost function.270

Effectively, the quadratic cost function discourages power ex-271

change between any pair of MGs that are connected through an272

energy router. This enables the system to keep efficiency loss to273

minimum by reducing conversion losses incurred by the power274

converter. In addition, it also reduces line losses by reducing275

power flow between generators and loads that are far apart.276

Now, the cost of power transfer, F from kth MG to mth MG277

can be conveniently defined as278

F = ump
2
k,m (7)

where um is cost coefficient for power transfer between MGs279

and pk,m is power flowing from kth MG to mth. The value of280

um is taken as 1.281

F. Optimization Problem Formulation for MMG 282

There is an underlying tradeoff among the conflicting ob- 283

jectives of reducing cost of pollutant emissions, reducing gen- 284

eration cost of thermal generators, reducing operational and 285

curtailment cost of PV and cost of power transfer between MGs 286

with the help of energy router. The multiobjective economic- 287

emission dispatch problem with PV penetration and power ex- 288

change between MGs can now be formulated for all m MGs, 289

based on above details as follows. 290

min
∑

m

{
∑

i

Di

(
p

(G)
i,m

)
+ Cm

(
p(PV)
m

)

+ Bm

(
p(B )
m

)
+
∑

k

Fm (pk,m )

}

(8a)

subject to Mmpm + δm ≥ 0, (8b)

∑

i

p
(G)
i,m + p(PV)

m + p(B )
m +

⎛

⎝
∑

k

pk,m −
∑

j

pm,j

⎞

⎠

= Ldm + L
(EV)
dm , (8c)

pmin
i,m ≤ p

(G)
i,m ≤ pmax

i,m (8d)

where Mm is the Laplacian matrix of DGs in mth MG and 291

pm is a vector of powers generated from all DGs in mth MG. 292

The first inequality constraint in (8b) is termed as the relaxed 293

consensus constraint with relaxation coefficient δm . When δm = 294

0, Mmpm = 0, then this constraint becomes the consensus 295

constraint. The second equality constraint in (8c) is supply– 296

demand balance. The third constraint in (8d) is about upper and 297

lower power limits of DGs in an MG. A partial Lagrangian 298

function, £a for MMG case can now be derived from (8a) and 299

is given by 300

min
(
£a

(
p(G)

i,m ,pk,m ,p(PV )
m ,p(B)

m , λ
))

=

∑

m

{∑

i

Di

(
p

(G)
i,m

)
+Bm

(
p(B )
m

)
+ Cm

(
p(PV)
m

)

+
∑

k

Fm (pk,m )
}

+
∑

m

λm

⎧
⎪⎨

⎪⎩
Ldm + L

(EV)
dm

−
∑

i

p
(G)
i,m − p(PV)

m − p(B )
m

−
⎛

⎝
∑

k

pk,m −
∑

j

pm,j

⎞

⎠

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

subject to Mmpm + δm ≥ 0, pmin
i,m ≤ p

(G)
i,m ≤ pmax

i,m (9)

Problem in (9) can be decomposed into two subproblems, 301

namely MG subproblem and energy router subproblem that can 302

be solved independently. 303
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1) MG Subproblem: This problem is solved for each MG304

separately. The objective in this case is to solve (10) and gener-305

ate optimal powers from each DG i.e., p∗i,m , operate PV power306

sources at p∗(PV)
m and operate batteries with optimal charg-307

ing/discharging powers at p∗(B )
m . Each MG subproblem involves308

solving a multiagent problem of its own and can be considered309

a second level of distributed optimization.310

min
∑

i

Di

(
p

(G)
i,m

)
+ Cm

(
p(PV)
m

)
+Bm

(
p(B )
m

)

+ λm

{

Ldm + L
(EV)
dm −

∑

i

p
(G)
i,m − p(P V )

m − p(B )
m

}

subject to Mmpm + δm ≥ 0, pmin
i,m ≤ p

(G)
i,m ≤ pmax

i,m (10)

2) Energy Router Subproblem:

min Fm (pk,m ) − λm

{∑

k

pk,m −
∑

j

pm,j

}

(11)

311

3) Dual Problem:

max g(λ) = £
(
p∗(G)

i,m ,p∗
k,m ,p

∗(PV )
m ,p∗(B)

m , λ
)

(12)

312

G. Distributed Implementation313

Each MG is considered as a node in higher level power net-314

work with a tree-like structure. In this scheme, the energy is315

routed from the MG with surplus power generation capacity to316

the MG, which has power shortage to supply its internal loads.317

The shortage of power can happen due to unavailability or in-318

termittency of one of its DGs. An MG can receive power from319

another MG with lower cost of production. Each MG problem320

involves a multiagent problem and is solved independently by321

each MG. MG subproblem (10) solves for p∗(G)
i,m , p∗(PV)

m , p
∗(B )
m322

and sends this information to dual problem (12) and it sends back323

optimal incremental cost λ∗
m . Similarly, energy router problem324

(11) computes optimal p∗k,m and sends this information to dual325

problem (12) and it sends back optimal incremental cost λ∗
m326

to router problem (11). Effectively, this problem decomposition327

implements a hierarchical distributed optimization. The advan-328

tage of this scheme is its scalability and ease of implementation.329

Many more clusters of MG and energy routers can be incorpo-330

rated in a tree-like structure without much computational over-331

head.332

IV. DYNAMICS AND OPTIMIZED CONTROL OF MG333

SUBPROBLEM334

For single MG, the optimization problem (8a) reduces to335

MG subproblem (10). The previously used notation for MG336

e.g., using subscript m can be dropped conveniently simplify-337

ing notation and therfore, in (10), M ∈ RN×N and δ ∈ RN .338

Ld denotes the load demand in each MG. The first equality339

constraint is supply–demand balance. The second equality con-340

straint in (10) is termed as the relaxed consensus constraint with341

relaxation coefficient δ. When δ = 0, Mp = 0, then this con- 342

straint becomes the consensus constraint. By allowing δ ≥ 0 343

and correspondingly Mp + δ ≥ 0, consensus constraint is re- 344

laxed, which in turn provides the flexibility to reduce the overall 345

generation cost. The last set of constraints in (10) are individual 346

generator minimum and maximum power generation limits. In 347

(10), p(PV)
m is power output from PV panels, p(B )

m is power out- 348

put from battery unit, L(EV)
d is a distributed charging load due to 349

EVs, which also affects system transients. The problem in (10) 350

can be solved using the Lagrangian duality. In conventional ED 351

problem, a constrained optimization problem is formulated us- 352

ing Lagrange multiplier theory. As shown later in this section, 353

this conventional approach is equivalent to integral-based con- 354

trol, which results in poor dynamic performance. To improve the 355

dynamic performance, DPC-based optimized ED solution ap- 356

proach is proposed. Due to the inherent integral control action, 357

the dynamic performance of optimized power generation may 358

not be satisfactory. The Lagrangian, £b for the optimization 359

problem (10) is defined as given below 360

£b

(
p,p(PV )

m ,p(B)
m ,λ,Φ

)
=
∑

i

Di(pi) + Cm

(
p(PV)
m

)

+ Bm (p(B )
m ) +

{

λ

{

Ld + L
(EV)
d −

∑

i

pi − p(PV)
m − p(B )

m

}

+ Φt [Mp + δ]
}

−
∑

i

{

θmin
i (pi − pmin

i )

+ θmax
i (pmax

i − pi)
}

,∀i (13)

In (13), λ and Φ are the Lagrange multipliers (or dual variables) 361

for equality constraints in (10) associated with the load–supply 362

balance and consensus, respectively, and θmin
i and θmax

i are La- 363

grange multipliers for inequality constraint in (10) for each DG. 364

Using (13), next the primal-dual dynamics is developed. The 365

optimal conditions for the optimization problem in (10) can be 366

achieved by taking partial derivatives of £b with respect to each 367

decision variable and setting each equation in (14) equal to zero. 368

Without considering the generator inequality constraints, a set 369

of first-order dynamic equations for single MG can be derived 370

as follows. 371

ṗi = kpi

{
D′
i(pi) − λ + ΦtMi

}
, ∀i

ṗpv = kpp v C
′
m

(
p(PV)
m

)
, ṗB = kpB B

′
m

(
p(B )
m

)

λ̇i = kλi

{

Ld + L
(EV)
d −

∑

i

pi − p(PV)
m − p(B )

m

}+

,∀i

φ̇i = kφi {[Mp]i + δi}+ , ∀i (14)

In (14), Mi represents the ith column of M, [Mp]i denotes 372

the ith element of vector Mp and φi ∈ Φ. The parameters kpi , 373

kpp v , kpB , kλi , and kφi are the step size scaling coefficients, 374

while the notation {z}+ in (14) is defined as max{0, z}. It 375

should be realized that the generator power updates, based on 376

the dynamics given by the first expression in (14), are subject 377
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to the minimum and maximum power constraints. Let ui =378

ΦtMi − λ is the control action. Using the expression for λ from379

(14) and substituting to the control actionui , the system dynamic380

equations can be rewritten as381

ṗi = kpi

{
D′
i(pi) + ui

}
, ∀i

ṗpv = kpp v C
′
m

(
p(PV)
m

)
, ṗB = kpB B

′
m

(
p(B )
m

)

ui =
{

ΦtMi − kλi

∫ t

0

{

Ld + L
(EV)
d

−
∑

i

pi(τ) − p(PV)
m (τ) − p(B )

m (τ)
}+

dτ

}

, ∀i

φi = kφi

∫ t

0
{[Mp(τ)]i + δi}+ dτ, ∀i (15)

The auxiliary variable ui in (15) is in fact the control law, which382

effectively implements an integral control to achieve desired383

economic-emission dispatch. To improve the dynamic perfor-384

mance during power transients due to any variations in load385

demand, a distributed DPCbased solution is developed. This is386

achieved by modifying the system dynamics in (15), to con-387

struct an augmented Lagrangian function £c from (13) and is388

given by389

£c

(
p,p(PV )

m ,p(B)
m λ,Φ, p̃

)

=
∑

i

(Di(pi)) + Cm

(
p(PV)
m

)
+Bm (p(B )

m )

+ k
(i)
1

{

λ

(

Ld + L
(EV)
d −

∑

i

pi − p(PV)
m

)

− p(B )
m )

+ Φt [Mp + δ]
}

+
(
k

(i)
2

)
/2

{∑

i

(pi − p̃i)
2
}

+
(
k

(i)
3

)
/2(Ld + L

(EV)
d −

∑

i

pi − p(P V )
m − p(B )

m )2 (16)

In (16), k(i)
1 , k(i)

2 , and k(i)
3 are integral, derivative, and propor-390

tional gains, respectively, and p̃i is an auxiliary state variable.391

The integral term in (16) is same as in (13), while two more392

terms are introduced in augmented Lagrangian. The functional-393

ity of these terms will be verified later in this section. It is worth394

mentioning that the last term with gain k(i)
3 , in augmented La-395

grangian, is introduced using only supply–demand balance con-396

straint to respond to any variations in the load. Using augmented397

Lagrangian in (16) the updated primal dual dynamics becomes398

ṗi = kpi (D′
i(pi) + ui) , ∀i, ˙̃pi = k̃pi (pi − p̃i), ∀i

ṗpv = kpp v C
′
m

(
p(PV)
m

)
, ṗB = kpB B

′
m

(
p(B )
m

)

λ̇i = kλi

{

Ld + L
(EV)
d −

∑

i

pi − p(PV)
m − p(B )

m

}+

,∀i

φ̇i = kφi {[Mp]i + δi}+ , ∀i (17)

where control law ui is given by 399

ui = −k(i)
1 [λ − ΦtMi ] + k

(i)
2 (pi − p̃i) − k

(i)
3 ψ(λ̇), ∀i.

(18)

The first expression in (17) represents the power system dy- 400

namics for economic-emission dispatch and the associated con- 401

troller, ui . kpi is a gain term associated with generators first- 402

order power dynamics. The second expression is responsible 403

for PV power variation due to irradiance and temperature.The 404

third expression is responsible for battery power. The fourth 405

expression effectively implements the derivative control as dis- 406

cussed later, while the fifth and sixth expressions in (17) are 407

the same dual variable updates obtained in (14). The con- 408

trol ui in (18) implements a novel dynamic controller called 409

DPC, where ψ(.) is a linear functional mapping. The first term, 410

in (18), is the integral control action as discussed previously. 411

The last term implements a sort of proportional control action. 412

This can be verified using a simple linear functional mapping as 413

ψ(λ̇) = λ̇. The λ̇ is proportional to pi , as verified using the third 414

expression of (17) and results in proportional control action. The 415

structure of the proposed DPC is, in fact, a modified version of 416

a basic PID controller. The second term in (18) implements the 417

derivative control action. The second term, k(i)
2 (pi − p̃i), in (18) 418

converges to zero at equilibrium and equivalently, the auxiliary 419

variable p̃i converges to pi, ∀i. This term is responsible for 420

implementing derivative control action in variable pi , as veri- 421

fied below. For this purpose, applying Laplace transformation 422

to ˙̃pi = k̃pi (pi − p̃i), results in 423

p̃i(s) =
k̃pi

s+ k̃pi
pi(s). (19)

Substituting p̃i(s) from (19) to the expression k
(i)
2 (pi − p̃i), 424

it becomes k
( i )
2

s+ k̃p i
spi(s), which implements derivative control 425

in pi , while the coefficient k
( i )
2

s+ k̃p i
implements low pass filter- 426

ing. Choosing a large value of gain parameter k̃pi increases the 427

bandwidth of derivative control. 428

A. Distributed Consensus Algorithm 429

Our algorithm is distributed in the sense that no leader or mas- 430

ter nodes are needed, while all the nodes (generators) conduct lo- 431

cal computation and communicate with their neighbors. The so- 432

lution to the optimal control problem given in (17) can be found 433

in an iterative procedure by exchanging the primal and dual vari- 434

ables among the DG agents for their computations. By choosing 435

small enough positive values for kpi , kpp v , kpB , k̃pi , kλi , and kφi 436

in (17), the update (17) would converge to the optimal point of 437

the problem [22]. However, using (17) requires each node having 438

access to certain global information of the MG’s load demand 439

and power generation of all DGs and values for PV generation. 440

To make the algorithm (17) distributed, instead of using global 441

information, DG agents are allowed to use local value and share 442

this information with their neighboring agents and try to achieve 443

consensus. 444
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Each DG agent gathers information locally and communicate445

with other neighboring DG agents in the MG. The Laplacian446

matrix is responsible for connectivity among DGs. The infor-447

mation among the DGs is exchanged using wireless link (e.g.,448

WiFi or Wireless Broadband) based communication interface.449

Agents communicate at the application level and any agent com-450

munication language (ACL) can be employed as the application451

layer protocol. For instance, FIPA-ACL [23] one possible ACL452

that can be used for this purpose.453

B. Proof of Convergence454

The convergence of DPC-based DED can be analyzed us-455

ing Lyapunov stability theory. For that purpose, let us define456

p̄ = [pt p̃t p(PV )
m p(B)

m ]t . It is straightforward to verify that457

the augmented Lagrangian £c(p,p
(PV )
m ,p(B)

m , λ,Φ, p̃) in (16)458

is a convex function of p̄, while it is concave in λ and Φ. In459

addition, we minimize £c(p̄, λ,Φ) with respect to p̄, while it460

is maximized for λ and Φ. Using this fact and combining it461

with first-order convexity condition [24], we obtain following462

expression.463

˙̄pi = −kp̄i
∂£c

∂p̄i
, λ̇ = kλ

∂£c

∂λ
, φ̇i = kφi

∂£c

∂φi
,∀i. (20)

In (20), kp̄i can be either kpi or k̃pi . Now using the second-order464

condition for convexity, we obtain465

∂2£c

∂p̄2
i

≥ 0,
∂2£c

∂λ2
≤ 0,

∂2£c

∂φ2
i

≤ 0 ∀i. (21)

For stability analysis, we use Lyapunov theory. Specifically, we466

use the following candidate Lyapunov function to prove the467

stability of the proposed dynamic controller.468

V (p̄, λ,Φ) =
[
g(p̄) g(λ) g(Φ)

]
Q

⎡

⎣
g(p̄)
g(λ)
g(Φ)

⎤

⎦ . (22)

The Lyapunov function, in (22), is based on Krasovskii’s method469

[25], where g(.) is a functional mapping of state dynamics as470

defined later in this section. For the candidate function in (22),471

the matrix Q is required to be positive definite i.e., Q > 0 and472

Qt = Q. A possible choice forQ, which fulfills the above men-473

tioned requirements is given by474

Q =
1
2

⎡

⎣
Π−1 0 0
0 k−1

λ 0
0 0 Γ−1

⎤

⎦ . (23)

In (23), Π and Γ are diagonal matrices with appropriate dimen-475

sions, where kφi are diagonal entries of matrix Γ, while kpi and476

k̃pi are diagonal entries of matrix Π. Next time derivative of477

Lyapunov function V (p̄, λ,Φ), results in 478

V̇ (p̄, λ,Φ) =
[

˙̄p λ̇ Φ̇
]

⎡

⎢
⎢
⎣

∂g(p̄)
∂ p̄

∂ g(λ)
∂ p̄

∂ g(Φ)
∂ p̄

∂ g(p̄)
∂ λ̄

∂g(λ)
∂ λ̄

∂g(Φ)
∂ λ̄

∂g(p̄)
∂ Φ̄

∂g(λ)
∂ Φ̄

∂g(Φ)
∂ Φ̄

⎤

⎥
⎥
⎦

Q+Q

⎡

⎢
⎢
⎣

∂g(p̄)
∂ p̄

∂ g(p̄)
∂λ

∂g(p̄)
∂Φ

∂g(λ)
∂ p̄

∂ g(λ)
∂λ

∂g(λ)
∂Φ

∂g(Φ)
∂ p̄

∂ g(Φ)
∂λ

∂g(Φ)
∂Φ

⎤

⎥
⎥
⎦

⎡

⎢
⎣

˙̄p

λ̇

Φ̇

⎤

⎥
⎦ . (24)

Now let us define g(p̄) = ˙̄p, g(λ) = λ̇, g(Φ) = Φ̇. Combining 479

this, with first- and second-order convexity conditions given in 480

(20) and (21), results in the following expression. 481

⎡

⎢
⎢
⎣

∂g(p̄)
∂ p̄

∂ g(p̄)
∂λ

∂g(p̄)
∂Φ

∂g(λ)
∂ p̄

∂ g(λ)
∂λ

∂g(λ)
∂Φ

∂g(Φ)
∂ p̄

∂ g(Φ)
∂λ

∂g(Φ)
∂Φ

⎤

⎥
⎥
⎦ =

1
2

⎡

⎢
⎢
⎣

−∂ 2£c

∂ p̄2
−∂ 2£c

∂λ∂ p̄
−∂ 2£c

∂λ∂ p̄

∂ 2£c

∂ p̄∂λ
∂ 2£c

∂λ2
∂ 2£c

∂ Φ̄∂λ

∂ 2£c

∂ p̄∂Φ
∂ 2£c

∂ λ̄∂Φ
∂ 2£c

∂Φ2

⎤

⎥
⎥
⎦ .

(25)
Substituting (25) to (24), we obtain 482

V̇ (p̄, λ,Φ) =
[

˙̄p λ̇ Φ̇
]

⎡

⎢
⎢
⎣

−∂ 2£c

∂ p̄2
−∂ 2£c

∂λ∂ p̄
−∂ 2£c

∂Φ∂ p̄
∂ 2£c

∂ p̄∂λ
∂ 2£c

∂λ2
∂ 2£c

∂ Φ̄∂λ

∂ 2£c

∂ p̄∂Φ
∂ 2£c

∂ λ̄∂Φ
∂ 2£c

∂Φ2

⎤

⎥
⎥
⎦

⎡

⎢
⎣

˙̄p

λ̇

Φ̇

⎤

⎥
⎦ . (26)

The stability of DPC is established by using the second-order 483

condition for convexity in (26). In particular, we get V̇ (p̄, λ,Φ) 484

≤ 0 by using the LaSalle’s invariance principle [25]. 485

V. PERFORMANCE RESULTS 486

A. MG1: Single MG 487

For the optimized power flow control from DG, a network 488

of four DGs [26] is studied. Each DG consists of a controller, 489

an energy source, and a power converter. The proposed DPC 490

algorithm is applicable for both grid connected as well as is- 491

landed mode of operation. Connectivity among four DGs in 492

MG1 is illustrated in Fig. 3. For given connectivity graph among 493

DGs in MG1, corresponding Laplacian matrix M1 for MG1 is 494

given by 495

M1 =

⎡

⎢
⎢
⎣

1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

⎤

⎥
⎥
⎦ . (27)

Maximum power generation limits for four generators are 496

tabulated in Table II. Generator minimum power limit, pmin
i is 497

set to 0.5 MW for all generators. It is assumed that generators 498

are conventional thermal power units with cost parameters given 499

in Table II , which are obtained from [27]. Emission cost param- 500

eters in Table II are derived from [15]. A total power demand 501

of 4 MW is assumed. Information among the DGs is exchanged 502

using an IEEE 802.15.4 based communication interface, which 503

provides data rate of 250 Kbps. Step size scaling coefficients 504
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TABLE II
GENERATION, EMISSION COST COEFFICIENTS, AND SYSTEM PARAMETERS

Fig. 3. Communication among DGs and power exchange between
MGs via energy router.

are configured with constant values as kpi = 2000, k̃pi = 400,505

kφi = 20, ∀i, and kλ = 30.506

1) Performance Analysis for DPC: In this case, the perfor-507

mance of integrator-based controller is compared with the pro-508

posed DPC-based optimized power generation for ED. For this509

scenario, the parameter δ is set equal to one-half of the load510

demand. This setting restricts the maximum generated power511

difference between any pair of generators not more than half of512

the load demand. The performance of integral control for ED513

is shown in Fig. 4. It can be observed from Fig. 4 that the sys-514

tem response exhibits poor transient performance. There is high515

overshoot at the beginning as system tries to adjust the power516

from different generation units. It takes approximately 0.60 s to517

reach steady state. Transients are introduced at 2 and 4 s time in-518

stances, by exposing the system to step changes in load demands519

i.e., from 1
2Ld to Ld and then to 3

4Ld , respectively. For these520

step changes in the load demand, poor transient performance is521

Fig. 4. Optimal power generation based on integral type optimized
control.

observed again. Same load transient scenario is applied to opti- 522

mized DPC and the response is shown in Fig. 5. Values for DPC 523

gains used for this case are tabulated in Table III. From Fig. 5, 524

a significant improvement is observed in transient performance 525

and system settles in less than 0.2 s. In addition, overshoot is 526

also reduced considerably, as shown in Fig. 5. Q4527

2) Effect of PV Power Variation: To further explore the tran- 528

sient response of proposed solution, PV power variation is taken 529

into account. A step change in PV power from its nominal gen- 530

eration of 1.5–1.2 MW is tested. The DGs power generation 531

due to PV power variation at 1–2 s interval is adjusted. Load Ld 532

is reduced at 3 s instance from 4 to 3 MW and corresponding 533

DGs power generation is reduced, resulting in reduced ther- 534

mal generation cost and emission cost. Fig. 6 clearly shows a 535

superior performance of the optimized control under load and 536

source PV power variation, while resulting in improved dynamic 537

performance. 538
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Fig. 5. Optimal power generation based on DPC type optimized
control.

TABLE III
GAIN VALUES FOR DPC

Fig. 6. Effect of PV power intermittency and load variation on DG power
output.

3) Effect of Time Varying EV Load on Integral and Optimized539

Controller: In this case, the measured data from [28] is used to540

model load of an EV charging and discharging for a Nissan Leaf541

EV, having 50 kW normal charging load to get further insight542

on the transient behavior of proposed solution. The results are543

shown in Fig. 7(a) and (b). When the charging load of 5 MW544

for a fleet of Nissan Leaf EVs is applied for up to 1.5 s, the545

generators share this load. A step change in load is introduced546

at 1.5 s. Performance of integral control is compared with that 547

of proposed DPC. As depicted in Fig. 7, integral controller has 548

poor transient performance compared to DPC. After 2 s, the 549

EV batteries are discharged, the load demand on generators 550

due to EV’s batteries is also adjusted and followed closely by 551

the DGs. From these results, it is obvious that DPC has supe- 552

rior dynamic performance compared to integral controller and 553

distributed optimized control is adapting time varying load con- 554

ditions. In a different scenario with the presence of time varying 555

EV charging load, DG power adjustment, emission cost, and 556

generation cost variations are studied. In this case, EV charging 557

load, LEV = 50 kW is varied at t = 2 s for a single Nissan Leaf 558

EV along with normal load of Ld = 500 kW applied to MG. 559

Fig. 8(a)–(c) shows the results for DG power adjustment, emis- 560

sion cost, and generation cost of the generators. It is obvious 561

from these results that distributed optimization is working and 562

dynamics in each case is following time varying EV load. 563

B. MMG With Energy Routing 564

1) Power Sharing Between Two MGs: Two MGs, MG1 and 565

MG2 have been considered in this case. The connectivity be- 566

tween MG1 and MG2 having four and three DGs, respectively, 567

is illustrated in Fig. 3. For given connectivity among DGs in 568

MG1 the corresponding Laplacian matrix M1 is given in (27) 569

and for that of MG2 (M2) is 570

M2 =

⎡

⎣
2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦ . (28)

Various parameters such as generation and emission cost coef- 571

ficients, power limits of various DGs, PV power and EV loads 572

are provided in Table II. Each MG has a PV power source with 573

maximum power rating of 1 MW. Simulation results are pro- 574

vided in Fig. 9. MG1 is supplying a load of 4 MW when there 575

is an additional 1 MW demand from 10 to 30 s as shown in 576

Fig. 9(a). MG1 can meet this load demand because its DGs can 577

provide additional power. Some of this power will be provided 578

by DGs of MG1 but not all due to its increased generation cost. 579

At this instance energy router allows power flow from MG2 to 580

MG1, due to lower generation cost at MG2 (see MG2 param- 581

eters in Table II). MG2 DGs will generate additional power to 582

partly meet the load demand of MG1 as shown in Fig. 9(b). As 583

a result, power flows from MG2 to MG1 as shown in Fig. 9(c). 584

2) Energy Output/Demand and Comparison With [17]: In 585

this case, we compare performance of our proposed control 586

with Fig. 5(a) from [17]. The basis of comparison is with (31) 587

in [17], which is quadratically augmented Lagrangian function. 588

A distributed consensus based ADMM algorithm is developed 589

by authors and results are obtained for optimal powers [17]. In 590

our case, the choice of Lagrangian function is given by (16). 591

We consider two MGs (energy bodies in [17]) MG1 with four 592

generators (participants in [17]) and MG2 with three generators 593

(participants in [17]). The rating of the generators are similar 594

to those used by [17]. Results of this comparison are shown in 595

Fig. 10. Fig. 10(a) and (b) corresponds to Fig. 5(a) in [17]. It 596

is clear from Fig. 10(a) that dynamic performance of ADMM 597
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Fig. 7. (a) Integral controller performance with time varying EV load. (b) Optimized controller performance with time varying EV load.

Fig. 8. (a) DG power adaptation with time varying EV load. (b) Emission cost with time varying EV load. (c) Generation cost with time varying EV
load.

Fig. 9. Power sharing between two MGs with increased load demand in MG1(a) MG1 DG powers and load. (b) MG2 DG powers and load.
(c) Power from MG2 to MG1.

is not good and there are power oscillations around the opti-598

mal point. We can also observe this in Fig. 5(a) in [17] that599

there is high overshoot before reaching optimal value. To re-600

move these oscillations, the parameters are tuned further and601

results are provided in Fig. 10(b). Consensus among generators602

is achieved but no of iterations to achieve this are increased and603

there is high overshoot similar to Fig. 5(a) in [17]. Result for604

proposed control is given in Fig. 10(c), which shows clear im- 605

provement in dynamic performance and objective of consensus 606

is also achieved in fewer iterations. Q5607

3) Plug and Play Capability Verification and Comparison 608

With [17]: To verify Plug-and-Play (PnP) capabilities, DG1 and 609

DG3 in MG1 are intentionally disconnected at t = 16.67 s and 610

t = 50 s (their communication links are also interrupted), until 611
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Fig. 10. Comparison with [17] power output/demand (a) DG powers using’ in [17]. (b) DG powers using ADMM in [17] with better tuning. (c) DG
powers using proposed DPC control.

Fig. 11. PnP capability verification and comparison with [17]. (a) MG1 DG powers and load with DG1 and DG3 plug-out/plug-in. (b) MG2 DG
powers and load. (c) Power from MG2 to MG1.

t = 33.34 s and t = 83.34 s, when these DGs join back MG1612

again. Fig. 11 depicts the performance of the proposed con-613

troller for this scenario. MG1 supplies its normal load of 4 MW614

and MG2 supplies its normal load of 3 MW. When DG3 is dis-615

connected at t = 16.67 s, MG1’s DGs can supply only 3 MW as616

shown in Fig. 11(a). MG2 DGs increase their power production617

between t = 16.67 s and t = 33.34 s as shown in Fig. 11(b) and618

about 1 MW is supplied to MG1. 1 MW is routed from MG2619

to MG1 as shown in Fig. 11(c). A similar scenario is shown620

when DG1 is plugged out at t = 50 s and then plugged in at621

t = 83.34 s. MG2 DGs increase their power production between622

t = 50 s and t = 83.34 s. This PnP feature clearly indicates that,623

once DG1 or DG3 leaves MG1, other DGs in MG2 increase their624

supplied active powers proportional to their rated values meeting625

total load demand. Comparing this PnP feature with Fig. 7(a)626

of [17], it is obvious that there are transients in Fig. 7(a) at627

plug-out/plug-in instants in [17]. However, proposed solution628

has smooth power transitions when DGs are plug-out/plug-in629

and shows the better dynamic performance of our control.630

VI. CONCLUSION631

The problem of optimized control for DG and their ED is632

considered for a single as well as MMG scenario. Specifically,633

as a first step augmented Lagrangian approach along with MAS634

model, is used to design a DPC, which provides improved tran-635

sient performance for single MG scenario. The system model 636

integrates renewable sources, such as PV as well as EVs, to 637

further study the performance improvement provided by DPC. 638

The proposed solution for single MG is extended to MMG by 639

introducing energy router concept. The performance evaluation 640

results also show the performance improvement during load 641

(e.g., EV) as well as source (e.g., PV) transients. The optimal 642

power flow in case of an MMG is achieved using distributed 643

optimization. We anticipate that the scaling of proposed MMG 644

architecture will lead to Energy-Internet. 645
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