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Abstract— In this article, a broad overview of the current
research trends in power-electronic innovations in cyber–physical
systems (CPSs) is presented. The recent advances in semiconduc-
tor device technologies, control architectures, and communication
methodologies have enabled researchers to develop integrated
smart CPSs that can cater to the emerging requirements of
smart grids, renewable energy, electric vehicles, trains, ships,
the Internet of Things (IoT), and so on. The topics presented
in this article include novel power-distribution architectures,
protection techniques considering large renewable integration in
smart grids, wireless charging in electric vehicles, simultaneous
power and information transmission, multihop network-based
coordination, power technologies for renewable energy and smart
transformer, CPS reliability, transactive smart railway grid, and
real-time simulation of shipboard power systems. It is anticipated
that the research trends presented in this article will provide a
timely and useful overview to the power-electronics researchers
with broad applications in CPSs.

Index Terms— Communication, control, cyber-physical sys-
tems (CPSs), microgrid, power electronics, protection, real, relia-
bility, resilience, security, simulation, solar, storage, transformer,
wind energy, wireless.

I. INTRODUCTION

THE recent advancements in wide bandgap semiconductor
devices, electric vehicles, and locomotives and a general

push from the government agencies worldwide toward renew-
able energy integration have resulted in a number of advance-
ments in power electronics research. These include, but are not
limited to, high-efficiency power circuit topologies, sophisti-
cated battery management and charging systems, intelligent
power converters, wireless power transfer (WPT), and the
Internet-of-Things (IoT) devices. A feature that distinguishes
the current research from conventional power electronics is
the attempt to seamlessly integrate the cyberlayer consisting
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Fig. 1. Mapping of topics covered in this article to the components of CPSs.

of control, communication, and computing with the physical
layer that includes the power semiconductor devices, passive,
and active circuit components. It is this integration that helps
in developing smart power solutions for applications, such as
IoT, fast charging solutions for electric vehicles, and aircraft
for urban air mobility.

In this article, a review of the current research trends
in power electronics innovations in cyber–physical systems
(CPSs) [1] is presented. This is described with reference to
several broad application areas, such as smart/micro-/nano-
grids, e-mobility, smart energy routing, IoT, and resilient
energy systems. The topics include alternate power distribution
architectures, topologies, protection schemes, communication
technologies, smart power components, and reliability of CPS.
Fig. 1 pictorially depicts all the sections presented in this
article and maps them to the components of CPS.

It must be noted that such a broad collection of research
topics that come under CPS has not been presented in the
literature. This article is targeted at enabling the research
community in the areas of power electronic hardware, control
techniques, and communication technology (wired/wireless) to
look for integrated CPS solutions that can help in developing
smart and resilient power converter technologies with the
ultimate goal of achieving energy sustainability.

The organization of this article is given as follows. Section II
introduces a resilient energy CPS. Section III describes a
power architecture and protection technology in modern and
smart grids. Section IV discusses the recent trends and issues
in e-mobility and power and information cotransmission.
In Section V, promising methods for coordinated control of
power-electronics-based networks are discussed. Section VI
gives an overview of the reliability in CPSs, while Section VII
describes power topology advances and smart transformer
modules. In Section VIII, a transactive approach to cost
of electricity reduction in a smart railway grid is outlined
followed by a description of real-time (RT) simulation for
shipboard power systems (SPSs) in Section IX. Conclusions
are provided in Section X.

II. CYBER–PHYSICAL AND RESILIENT ENERGY SYSTEMS

A power/energy system can be described as a CPS [1],
where a network of heterogeneous energy-suppliers and

Fig. 2. Overview of an energy CPS.

end-users form the physical layer, and the sensors, commu-
nication networks, supervisory control and data acquisition
(SCADA) systems, and control systems form the cyberlayer,
as shown in Fig. 2. The proper operation of an energy system
relies heavily on data collection, processing, and transmission,
all conducted by the cyberlayer. For example, a variety of
system measurements are synthesized at a SCADA to assist
in system monitoring, protection, RT control, and economic
dispatch [2]. Recently, the increasing deployment of advanced
metering infrastructure, emerging communication networks,
and powerful computing units have allowed for even more
wide-ranging monitoring and remote-control capability for
energy systems.

Although it is expected that the increasing investment in
the cyberlayer will make an energy system more resilient to
contingencies, many still are concerned that the increasing
dependence of system operations on cybernetic technologies
might introduce new challenges. First, a malfunction of a
cyber-domain component could lead to high-impact physical-
domain contingencies. For example, the cause of the costly
Northeastern 2003 blackout was believed to be a software
bug in the alarm system that hindered it from respond-
ing to a supposedly minor fault [3]. Second, adversaries
might exploit or even plant loopholes in the cyberlayer to



5148 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 9, NO. 5, OCTOBER 2021

maliciously maneuver system operations or to steal private
and security-related information. In the 2015 Ukraine power
grid cyberattacks, the adversaries corrupted the information
system to paralyze the power supply for tens of thousands of
customers [1]. Third, when cyberevents are accompanied by
physical contingencies, such as faults, as shown in Fig. 2,
the harmful impacts might be even more severe. Fourth,
many recent works have underlined the emerging challenges
due to the rapid integration of distributed energy resources
(DERs) [4]–[6], as their growing distributed capacity calls
for the need for coordination to a certain extent; however,
the sheer number creates difficulty for monitoring of cyber–
physical threats. Fifth, the expanding data sets about an energy
system may be eluding proprietary and security-related data;
advanced data mining approaches can recover safety–critical
information [7], [8]. For example, it is shown in [9] that using
only publicly available data is enough to launch attacks to
disrupt the operation of the power system of New York City.
Sixth, many are concerned about the cybersecurity of new
technologies, such as IoT and cloud computing [10], [11].
While the former promotes more communications, the latter
requires the concentration of data, both of which could be
vulnerable to cyberattacks [10]. To build a full-fledged energy
CPS, the resilience issue with respect to all sorts of cyber–
physical threats needs to be thoroughly addressed.

Resilience-related problems for an energy CPS have
been studied recently with transdisciplinary approaches. For
instance, functional analysis [12], data-driven approaches [13],
and stochastic optimization techniques [14] have shown
promising results in studying system analysis, attack detection,
and system-hardening problems. Many cyberattack detection
methods have been developed recently [15]–[19]. Both model-
based and model-free methods have been developed [15]. For
the former, attack detection techniques based on weighted least
squares (WLSs) formulations are to be used in applications,
such as state estimations [16], [17]; meanwhile, standard
fault detection and isolation methods, such as observer-based
fault detection methods, have been developed as well [18].
As for model-free methods, a variety of machine learning-
based methods has been developed [7], [8], [19], ranging from
supervised learning approaches [8], [19] and unsupervised
counterparts [7].

III. POWER ARCHITECTURES AND PROTECTION SCHEMES

IN MODERN POWER GRIDS

A. Power Electronics Intelligence at the Network Edge
Inverter Technology at the Grid Edge

DERs, such as solar, are expected to grow substantially
in the near future due to the sharp drop in the cost of
solar panels. More than half the total U.S. photovoltaic (PV)
capacity comes from distributed PV connected to distribution
systems [20]. High penetration of DERs typically has variable
output; therefore, maintaining a good voltage profile becomes
challenging due to the relatively low spatial and temporal reso-
lution of voltage control devices [21]. In traditional residential
systems, the house/load is directly connected to the grid, and
the residential load is susceptible to grid voltage variations.

Fig. 3. Proposed power electronics at the grid edge—a self-organizing
converter with control intelligence at the edge of the grid.

Furthermore, it is not possible to limit the amount of power
delivered to each consumer in the case of limited availability,
such as during disasters. Furthermore, nonlinear residential
loads inject current harmonics into the grid.

A solution for fast volt-VAR control has been studied in
[22], where an edge of network grid optimization (ENGO)
device is used to inject reactive power at the secondary side
of distribution transformers, correcting the voltage variations
between 2 and 13 V at the edge of the grid. Such a device has
been shown to work autonomously, with a subcycle response.
Another option is the use of smart transformers to compensate
for voltage variations at the grid edge [23], [24]. These
transformers combine line and medium frequency transformers
with partially rated power electronic modules.

In a recent study [25], a self-organizing power electronics
converter (see Fig. 3) with control intelligence at the edge
of the electric distribution network has been introduced. The
proposed system, called Power Electronics Intelligence at the
Network Edge (PINE), as shown in Fig. 3, consists of three
main stages: a front-end PWM converter that reduces current
harmonics and maintains constant dc-link voltage, rooftop
solar PV/Battery system connected to the dc-link, and an
output PWM converter that feeds the load. The proposed
approach enables several advantages. The PINE converter
processes all the power from/to the grid, adding the ability
to manage and route the energy in all directions; this enables
utility companies to limit the amount of energy delivered to
each customer, particularly useful during power outages. Also,
because PINE allows for the output voltage to be regulated,
the voltage regulation needed from the utility company can
be significantly reduced. Finally, the rectifier section of the
topology can be controlled to exhibit a power factor close to
unity, reducing the rms value of distribution line currents and,
thereby, minimizing losses.

To study the behavior of multiple PINE converters con-
nected in a distribution network (see Fig. 4), an average model
for an individual converter is developed. The average model
is exercised on a test feeder based on the IEEE-37 test-node
feeder [26], as shown in Fig. 4. A detailed study of this concept
is available in [25].

B. Coordinated Protection of HVDC and MVdc Systems in
Microgrids

Voltage-source converter (VSC)-based high voltage direct-
current (HVDC) systems have been well accepted as feasible
solutions for grid interconnection and large-scale renew-
able energy integration over long distances [27]. Recently,
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Fig. 4. Test feeder used to simulate high penetration levels of PINE in a
distribution feeder, based on the IEEE-37 test node feeder.

Fig. 5. Protection schemes of meshed dc grids.

the application of medium voltage direct-current (MVdc)
systems has increased significantly due to their deployment
in microgrids [28]. Protection of HVDC and MVdc systems
is challenging since the dc circuit has a lower inductance,
a higher rate of change of fault currents, and a faster fault prop-
agation than an ac circuit with an identical rating. Therefore,
the next-generation protection system for HVDC and MVdc
systems is being developed using advanced cyber and physical
techniques, such as digital relays, communication links, and
dc circuit breakers (DCCBs), to enhance the security and
resilience of hybrid ac/dc power systems.

Pilot protection schemes, such as those based on wavelet
transform and differential current methods, require commu-
nication links between relays at both ends of a dc line to
compare measured signals at two ends for fault detection
[29], [30]. Specifically, the wavelet transform method is to
detect the transient signals that travel along a dc line with
multiple frequencies’ waves moving away from the fault
location toward both ends of the line, as shown in Fig. 5. The
wavelet transform method can identify the time and frequency
characteristics of a fault current traveling wave at two ends
and extract their polarities to discriminate the internal faults
located on a dc line. The differential method relies on the
detection of the difference between fault currents (Ifa and Ifb)
that feed into the fault location from two ends of a dc line.
With the detection of dc faults, the relays on both ends of
the dc line will trigger DCCBs to interrupt fault currents and
isolate faults. These detection methods are reliable but rely

Fig. 6. Configuration of a MMC-HVDC protection strategy: (a) full-
bridge MMC, (b) half-bridge MMC with a thyristor-based bypassing circuit,
(c) bypassing circuit formed by control of IGBTs in a half-bridge MMC, and
(d) balanced ac short circuit.

heavily on a communication link between the relays at two
ends. The communication link can be costly for a long dc line
and with a communication delay that cannot be neglected.
Alternative protection schemes detect dc faults based on local
signals, such as voltages, currents, and their derivations [31].
Although these methods cost less, they require a high sampling
frequency and are less reliable since they are easily affected
by signal noises and measurement errors.

There are protection schemes based on the coordination
between converters and DCCBs. Currently, the existing DCCB
techniques are limited by their response time, voltage rat-
ing, and cost. These protection schemes perform a flexible
control of converters to limit dc fault currents to reduce the
rating and cost of the DCCBs. The corresponding strategies
include: 1) applying full-bridge modular multilevel converters
(MMCs) to block the fault current flowing through IGBTs’
diodes [see Fig. 6(a)] and 2) using half-bridge MMCs to form
bypassing circuits using additional thyristors or controlling
their own IGBTs [see Fig. 6(b) and (c)] [32], [33]. These
bypass circuits can convert the dc fault circuit into a balanced
ac circuit. As a result, the MMC capacitors stop discharging,
and the dc fault current is reduced dramatically to enable
successful tripping of the DCCBs with a lower rating.

The protection coordination between dc and ac systems is
also significant for hybrid ac/dc power systems because the
control and operation of dc systems have significant impacts
on traditional protection systems of ac systems. The research
work in [34]–[36] proposed a fast and reliable algorithm
to identify miscoordinated relays in an ac system due to
interconnection of the HVDC and determine their appropriate
relay settings.

IV. E-MOBILITY AND WIRELESS INFORMATION AND

POWER TRANSFER

A. E-Mobility and Charging

Electric vehicles are here, and this time, they are here to
stay. All-electric propulsion systems can be powered by a
battery, a fuel cell, or a gasoline-powered alternator to form
battery electric, fuel cell hybrid, and extended-range electric
vehicles. The electric propulsion includes a traction inverter
and an electric motor. In the fuel cell hybrid case, there
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is also a need for a voltage regulator to supply constant
voltage to the inverter even when the fuel cell output voltage
reduces at higher loads. The battery-electric vehicle includes
either an onboard charger or an off-board charger. Typically,
more than 100-kW power will be transferred through the
inverters to move the vehicle. Cyber–physical security of these
components is important to ensure that the right amount of
power is produced at the right time. Hijacking the torque
command or charging command can result in major damage
to the vehicles and the people riding in them. In addition to
these, the sensors on these vehicles must process the right
data and output the correct results for the vehicle to function
properly without posing danger to anyone. These vehicles will
be carrying a lot of energy in the form of batteries, hydrogen,
and gasoline, which could be volatile if not controlled properly
using appropriate sensor data.

There are some semiautonomous vehicles on the road today
with some navigation, at least on the highways. The future
promises more connected and autonomous vehicles. These
vehicles will have all the abovementioned power electron-
ics along with many more sensors and computers requiring
additional power [37]. In such vehicles, comprising commu-
nication, controls, and computing systems, including edge
computing at the sensor level, there is the potential for more
vulnerabilities. Eventually, with the humans out of the loop,
for full Level-5 autonomy [38], these systems will be even
more critical since there will not be a human driver to take
control in the case of danger.

Charging systems connect vehicle electronics to the grid
systems allowing critical communication between two impor-
tant infrastructures. With an all-electric transportation system,
there will be thousands and, eventually, millions of these
vehicles connected to the grid at any time allowing people
trying to gain access to the grid through the vehicle sys-
tems, or vice versa, which is why both systems should be
designed in a secure manner and not necessarily independently
but in coordination with each other preventing vulnerabilities
[39], [40]. With charging power levels going beyond 350 kW
for passenger vehicles and beyond 1 MW for commercial
vehicles, an interruption could disable vehicles or reduce
the charging power, which would take them out of service
impacting large segments of society. These power levels also
indicate much higher energy levels being transferred to the
batteries, which makes it critical to have secure chargers and
battery management systems to avoid any catastrophic failures.

Another charging technology that will allow autonomous
vehicles is wireless charging [41]; after all, if someone must
plug the vehicles in, they cannot be considered completely
autonomous. There is also dynamic or in-motion wireless
charging, which, together with autonomous static charging,
potentially allows vehicles to have unlimited range eliminating
the range anxiety of electric vehicles [42], [43]. For static
charging, the vehicles are parked at home or at work. There is
also dynamic or in-motion wireless charging, which, together
with autonomous static charging, potentially allows the vehicle
to have unlimited range eliminating the range anxiety associ-
ated with electric vehicles [42], [43]. Experimental evaluation
of 120- [see Fig. 7(a)] and 20-kW [see Fig. 7(b)] static wireless

Fig. 7. (a) Double-D coil that was used by the Oak Ridge National Labo-
ratory’s (ORNL’s) 120-kW static wireless charging demonstration. (b) Earlier
20-kW static wireless charging system demonstrated on a Rav4 EV at ORNL.

charging systems demonstrated a dc-to-dc efficiency of 97%
with a 150-mm gap between the transmitter [see Fig. 7(a)]
and receiver coils. The feasibility of this system resulted in
the team looking into 300-kW static wireless charging systems
and 200-kW dynamic wireless charging systems.

Static wireless charging at home or work brings the same
concerns about the connection to the grid [41]. With vehicles
being charged from the road dynamically, in addition to all
the electronics mentioned earlier with respect to autonomous
vehicles, to support high power, a medium voltage connected
power electronics system will be a part of the traffic system
connecting roads directly to the grid. This will open more ways
for hackers to infiltrate vehicle and grid systems potentially
causing havoc in traffic.

For these systems to be secure, not just cybersecurity of
software but also cyber–physical security of power electronics
is extremely important. While designing these systems, more
consideration needs to be given regarding what part of controls
and data processing needs to be software- or hardware-based.

B. Power and Information Cotransmission

Although radio waves can carry both energy and infor-
mation simultaneously, the radio frequency transmission of
these quantities has traditionally been treated separately. Some
recent studies have provided experimental evidence for wire-
less information and power transmission (WIPT), in which
information and energy flow together through the same signal.
From a communication theory perspective, transmitting data
and power over different spectra—such as using pulsewidth
to overlay information on top of power transfer—or sending
two signals over two time slots (not simultaneous) or using
two antennas are conceptionally identical for wireless com-
munication and not spectrum efficient. This is especially
challenging in the case of massive-connected IoT devices
that monitor, for instance, structural health, logistics, security,
health care, and agriculture. The main open challenge here
lies in the limited available frequency spectrum, shared by
all devices to transmit data and receive power, combined
with the requirement of maintenance-free and high-reliability
data transmission, especially from the standpoint of energy
sustainability. Most implementation of WIPT receivers did
not operate using WPT and wireless information transmission
(WIT) on the same received signal [44]–[48]. There are two
facets to this restriction: first, the WPT operation on the WIT
signal destroys the information content of the signal; second,
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Fig. 8. Wireless cotransmission of power and information.

Fig. 9. Boolean power and data transfer mechanism.

the WIT and WPT have very different power sensitivity (e.g.,
−10 dBm for energy harvesters versus −60 dBm for informa-
tion receivers) [44]. These limitations inspired several research
efforts on splitting the received signal into two orthogonal
parts. The common practical techniques include time switch-
ing, power splitting, and antenna switching [44]–[48]. All prior
approaches have the disadvantage of interrupted information
transmission and low-spectrum efficiency. This is logical since,
up until recently, it was assumed that simultaneous reception
and transmission on the same frequency, i.e., in-band full-
duplex (FD) communication is impossible. Recent works have
provided experimental methodologies for FD communication,
in which a node can transmit and receive signals at the same
time and on the same frequency band [49]–[51]. This research
guarantees low-latency transmission as required by, among
others, delay-sensitive sensor information. It also allows the
use of wideband optimum waveforms for WPT to increase
the dc power level at the receivers [52]–[56].

Motivated by the advances in RF-power transfer and FD
communication, we believe that FD-WIPT (see Fig. 8) is
a promising approach to sustainable-power low-latency data
transmission IoT network. This is very relevant for low-power
IoT devices with massive connections, such as communication
in disaster scenarios. Within this framework, the IoT devices
will harvest energy from incident RF signals and transmit
a message to the base station at the same time and on
the same frequency. The integration of wireless power and
wireless communications receivers brings also new challenges
related to self-interference cancellation and RF-power transfer
enhancement.

While wireless power and information are typically trans-
mitted using a common electromagnetic (continuous) mech-
anism, recently, Mazumder [57] and Mazumder and Gupta
[58] have introduced a mechanism where power and data flow
are no longer restricted to be continuous. In other words,
and as shown in Fig. 9, the power/energy and data can
be sent (with or without a waveguide) in discretized form.
This yields added reliability and interestingly; just like data,
energy packets can be coded. Furthermore, the signals can be

modulated and do not need to be pulsating. Instead, the signals
are Boolean in a generalized sense. Furthermore, the form of
power transmission can be multiquadrant. Preliminary results
have been provided in [59], and exciting research is ongoing
with broad applications [60].

V. COORDINATED CONTROL

Systems, where converters are the interfaced between many
of the main sources of energy and load centers, have the ability
to direct the flow of energy if the control of the converters is
appropriately coordinated. This allows for optimizing source
operating points for a system cost function and directing load
sharing and energy storage usage to meet operational require-
ments. Perhaps, the most common methods of coordination
utilized in microgrids are droop-based. Droop coordination
methods [61]–[64] are robust and are often adjusted via
low-bandwidth communication links making them relatively
insensitive to communication failures or delays. However,
adjustments to sharing allocations are slow compared to fast
communication-based methods, and bus voltage cannot be
stiffly regulated. Higher bandwidth communication can form
the basis of coordinating system control that allows for system-
wide energy management strategies [65]–[67] as an alternative
to droop-based methods when faster and tighter energy flow
control is desirable.

A. Multihop Network-Based Coordination of Power
Electronics

There has been a progress in the area of modular converter
systems due to continued research and development of the
power-electronics-building-block (PEBB) concept [68]. The
PEBB concept has driven advancements in highly modularized
converter systems with many identical subsystems, such as the
MMC. In addition, recent developments in SiC power devices
are yielding converters with far greater switching frequencies
and resulting in an order of magnitude reduction of the time
scales compared to converter systems utilizing conventional Si
IGBTs. Faster time scales translate to a need for more capable
control systems, which is usually being met using FPGA-based
platforms. Communication and computational capabilities of
new FPGA-based controllers provide opportunities beyond
simply supporting SiC PEBB-based converters.

Modules that form the control system for single converters
are traditionally colocated within the converter. In a PEBB-
based power distribution system, control and measurement
modules are spatially distributed. Thus, modules at the appli-
cation level of each converter control can be networked and,
furthermore, with sufficient communication speed, do not even
have to be colocated with converter equipment. A study [69]
was performed to determine the feasibility of distributing
converter application control among the modules within con-
verters and at control layers above individual converter control.
The study determined that it is acceptable since application
control for converter has a cycle time that is typically in the
lower millisecond range [70].

The stability and performance of a system of PEBB modules
are affected by the delay between when measurements are
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Fig. 10. PEBB control node communication network topologies. (a) Ring:
latency=n, 2 channel/node. (b) Tree: latency=log2 n, 3 channel/node. (c) 2-D
Torus: latency=√

n, 4 channel/node.

taken and when updated references are received from the
controller. Since each level of the PEBB control hierarchy
is connected in local network topology, transitioning pack-
ets between control levels will also contribute to the delay.
Latency serves as a constraint for the overall control system
design. As such, both the physical topology of the com-
munication network and the routing algorithm are important
considerations for the system design.

Several network topologies were evaluated [71], and some
of the candidate topologies are shown in Fig. 10. Fig. 10(a)
shows a simple 1-D bidirectional ring topology, where there is
only one minimal-distance path between any two endpoints.
The worst case round-trip path delay is n, where n is the
number of nodes (where a message must traverse n/2 rings in
both directions). In this topology, each module requires only
two bidirectional channels. Fig. 10(c) shows a 2-D torus topol-
ogy that offers more than one possible minimum-length paths
between any two endpoints that are not horizontally or ver-
tically aligned. The 2-D torus has a worst case round-trip
latency of n1/2 and requires four bidirectional channels per
node. Extending further, a 3-D torus would require six-channel
per node and have a worst case round-trip latency of n1/3. The
2-D torus was selected as the best compromise of the number
of communication links and performance.

The proposed multihop network topology is widely used
for large-scale distributed computing systems to smaller scale
networks-on-chip [72]–[75]. However, while these networks
seek to minimize average-case latency for varying dynamic
traffic, a PEBB controller network must guarantee a worst
case latency for regular static traffic. Power electronic control
systems consist of multiple control loops and levels or layers
of control within a hierarchy.

Single-hop communication latency in the 0.7-µs range has
been achieved [69], which includes all necessary subsystems
to implement application-level control functions. An additional
advantage of mesh networks is multiple reroute paths in the
event of a network or control node failure. In the event of a
node failure, the network can reroute by adding two additional
hops resulting in a worst case additional latency of 1.4 µs. This
is acceptable since application control for converter control
systems has a cycle time that is typically in the >100-µs

Fig. 11. Cluster of PEBBs coordinated over 2-D torus multihop network.

range [70]. With worst case hop timing needing less than 1%
of the application control cycle time, several tens of converters
can be coordinated via the 2-D torus PEBB control network.

Increasing communication and computational capabilities of
new FPGA-based controllers provide a new paradigm where,
as opposed to two distinct converters outlined in the pink boxes
of Fig. 11, this can be viewed as a single cluster of PEBBs. The
cluster with tight synchronization and coordination across the
multihop network reduces the need for energy-storage-based
decoupling at buses and other points in the electrical network.
Capacitive storage, for example, provides sufficient energy to
maintain the voltage at a bus within an acceptable range when
converters that are attached to the bus interact. The capacitive
storage must buffer response lags between converter control
subsystems. Low latency and tight synchronization of control
subsystems enabled by the network reduce response times of
systems interacting on a bus, and thus, the required storage is
reduced for the same bus transient limit.

B. Event-Triggered and Encoding-Based Control of
Distributed Power-Electronic Systems

An important question is how the communication-based
coordination workload, with the increasing penetration of
power electronics in networked power systems (e.g., micro-
grid, VPP, naval integrated power systems, and more-electric
aircraft), is ensured notwithstanding the advantages of coor-
dination of such CPSs. Conventional approaches often use
periodic data transmission, which typically incurs progres-
sively higher latency as the number of power-electronic nodes
increase. As such, there is ongoing exploration if a need-
based and/or control-centric communication (guided by the
event- or self-triggering) would be more beneficial [66]–[69],
[76]. Preliminary work, as illustrated in Fig. 12 [66], seems to
suggest promise by reducing the data rate for communication.
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Fig. 12. Comparison of rate of data packet transmission using conventional
periodic data transmission and that obtained using self-triggering (need)-based
data transmission for a centralized or a distributed coordination framework
in a power network. The efficacy of local event-triggered (need)-based
communication is evident.

Fig. 13. Illustration of the ability of a coding approach to reduce the
computation delay involved in the coordination of a plurality of inverters.

While event-triggering and control-centric communication
reduces data rate by carrying out need-based packet exchange,
a coding-based approach essentially focuses on the infor-
mation content of the data. For instance, such an approach
may reduce the rate of communication by transmitting a data
packet between control nodes when there is new information
content or sending only the new information content. Fig. 13
[72] illustrates the result of one such case study. The latter
pertains to coordinated control of multiple parallel inverters.
The figure shows that, if a differential data transmission is
adopted, then the number of inverters that can be coordinated
for the same delay is significantly higher, thereby boosting
the scalability of the coordinated inverter control. As power-
electronics penetrates networks at a larger scale, such coding
approaches become increasingly relevant.

VI. RELIABILITY IN POWER-ELECTRONIC-BASED

CYBER–PHYSICAL POWER SYSTEMS

CPS for power has facilitated the integration of phys-
ical power networks with embedded computing processes,

Fig. 14. Reliability evaluation and situational awareness of power-
electronics-based power CPSs.

thereby adding new capabilities. Furthermore, with the aim to
decarbonize the energy production process, power electronics
is dominating in modern power systems acting as the key
enabler in the energy conversion unit to extract “green” energy
from renewable energy sources. By virtue of these increasing
demands, the cyberlayer was brought in to become the “brain”
in handling and coordinating the operation and control of
modern power systems, which acts as the “body” (as shown
in Fig. 14).

The addition of more sensing, communication, variable
power sources, and storage under the renewable energy thrust
and smart grid initiative will add even higher orders of
dimensionality and complexity. This order of complexity,
intended to achieve higher levels of efficiency, flexibility, and
fault tolerance, can also be a source of higher failures of
complex nature that can degrade reliability. Since most of
the literature is focused on reliability indices emerging only
from the physical layer [78], it is crucial to assess the failure
modes resulting from the cyber–physical interactions in power-
electronics-based power CPSs.

As the cyber interdependence keeps growing, new reliability
indices from the power systems operation perspective need to
be developed to account for issues in the cyberlayer, such
as communication traffic, delay, data packet loss, link failure,
and cybersecurity (as shown in Fig. 14). With a higher degree
of cyber–physical interoperability, cyber failure modes may
indirectly trigger events in the physical layer, such as power
electronics component level reliability, stability concerns, and
overloading of converters, finally leading to emergency con-
tingencies. An account of the power CPS has been shown
in Fig. 15, where a large communication delay affects the
system performance. In the long run, these high-frequency
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Fig. 15. Impact of large communication delay on the operation of power
CPS.

oscillations will not only degrade the component’s lifetime
but will also alter system stability.

Finally, new reliability metrics need to be defined for power-
electronic-based power CPSs to account cyber–physical dis-
turbances and evaluate the failure, availability, and lifetime of
cyber–physical components [79], specifically for applications
such as protection against faults where the omnipresence of
both cyber and physical layers is inevitable. Moreover, further
research can be carried out to recommend the degree of cyber–
physical interoperability to ensure the reliability of power
electronics-based cyber–physical power systems.

VII. ADVANCES IN HARDWARE AND POWER-CONVERTER

TOPOLOGIES

A. Power Electronic Converters for Solar Plus Storage
Systems

The solar-plus-storage system is a typical configuration for
a DER generation system, where a battery energy storage
system (BESS) can be integrated with a solar PV system
to mitigate the irregularities of the PV system and improve
system reliability [80]. In a dc-coupled solar plus storage
system, both the PV and BESS are connected to a common dc
bus to supply energy to a grid-tied inverter or directly to the
loads in a microgrid. A bidirectional multiport dc–dc converter
is desirable to achieve power transfer among the PV arrays,
BESS, and the common dc bus. Among various solid-state
transformer (SST) topologies, the triple-active-bridge (TAB)
converter [81], [82], where three dc–ac converters are coupled
through a three-port transformer [83], can enable galvanic
isolation and transfer power among three dc ports with fewer
components. Moreover, similar to its two-port counterpart,
i.e., the dual-active-bridge (DAB) converter [84], the TAB
converter can operate at the zero-voltage-switching mode to
reduce switching losses. Thus, the TAB converter inherently
satisfies the needs of the solar plus storage system.

Compared to the conventional system configuration,
the TAB converter-based solar plus storage configuration
enables integration at the converter level, which will provide
a faster dynamic response and improve system robustness,
as a centralized controller can adjust the power distribution
between the PV port and BESS port rather than control-
ling power through communication between different dc–dc
converters [85]. To increase system efficiency and power
density, SiC devices have been adopted in the TAB design.
Fig. 16 shows the test setup of a 150-kW TAB system

Fig. 16. Test setup of a 150-kW TAB converter for solar plus storage systems.

Fig. 17. EMS for the solar plus storage-based RPR.

developed by the University of Arkansas [83] using 1.7-kV
SiC power modules.

For residential applications, various power router designs
are proposed to provide solar plus storage solutions. For
instance, a power router is proposed in [86], which has a PV
terminal, a BESS terminal, an isolated dual-half-bridge (DHB)
converter, and a split-phase inverter for load connection. The
residential power router (RPR) is controlled by a hierarchical
energy management system (EMS) shown in Fig. 17. The
secondary control of the EMS can minimize and a lifetime
of cyber–physical components [79], specifically expenses on
residential electrical utilities when grid-connected and max-
imize the power supply duration when off-grid. To prevent
the overgeneration at the PV terminal in the islanded mode,
the RPR system can operate with limited power point tracking.
In addition, the RPR can provide grid support, e.g., compen-
sate reactive power and phase imbalance.

In addition to the enhanced electrical performance reliability
described above, the RPR described has been further enhanced
with advanced cybersecurity features that provide enhanced
resiliency and availability [87]. This follows a defense-in-
depth strategy to enhance the overall cybersecurity of the
device and system but addressing communications, controls,
and hardware aspects of the design in Fig. 17. This includes
encryption, authentication, and protections that span both
hardware and firmware in addition to communications that
provide added assurance that solar plus storage systems can
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Fig. 18. Enhancement of substation transformer to perform advanced system
support.

remain safely in operation—even in the event of a cyberattack.
These measures address detection and mitigation methods
against the attack surface of the power electronics device as a
whole—preventing compromise and physical damage. These
cyber-hard-by-design approaches cost relatively little in terms
of additional hardware components but provide great benefits
for the RPR and grid.

B. Smart Transformer Conversion Module

The current U.S. power network is undergoing revolutionary
structural and functional changes with the proliferation of
renewable, converter-based DERs, and increased use of active
loads. Advancements in digital sensor networks, data analytics,
and communication technologies add new challenges to power
system control, grid visualization, operation, communication
bandwidth, and physical and cyber securities, with a resulting
threat to grid resilience and reliability [88]–[91].

One of the most strategic power equipment, in the legacy
power network, is the substation transformer. It is important
to transition traditional transformers into smart transformers
that can perform a variety of advanced grid support func-
tions [85], [92]–[94]. While the concept of smart SSTs is being
widely recognized, their respective lifetime and reliability raise
serious concerns with power utilities, thus hampering the
replacement of traditional transformers with fully electronic
SSTs. It is, therefore, proposed to introduce smart features in
conventional transformers utilizing simple, cost-effective, and
easy to install modules, which is highly desirable [91], [93],
[94]. These include voltage regulation, voltage and impedance
balancing, harmonics isolation, voltage ride through (VRT),
blocking dc in ac networks, and the prevention of the critical
grid assets from natural or man-made disturbances, as shown
in Fig. 18.

Adding more controllability in a traditional power trans-
former does provide greater flexibility and mitigation features
in power network operation, microgrid forming, and miti-
gation, but it also provides challenges in terms of vulnera-
bilities in terms of system protection, unintending islanding,
reliability, and cybersecurity. Additional requirements in terms
of localized self-healing and controllability from local sys-
tem parameters are essential in moving forward with more

Fig. 19. IEEE nine-bus system depicting hybrid smart transformers with
high penetration of intermitted resources and active loads [97].

Fig. 20. Mitigation of transformer saturation due to unwanted dc injection
using hybrid smart transformers [97].

advanced power system control and mitigation using AI [88],
[95], [96].

This power electronic-enhanced hybrid transformer concept
[91] was evaluated for several applications of these grid
support and mitigation functions on a nine-bus power system
with [97], as shown in Fig. 19. The HIL simulation results of
some of these functions are plotted in Fig. 20.

C. Applications of CPSs in Wind Energy Systems

More interest needs to be directed toward the generation
stage, especially the renewable energy sources, such as wind
energy, which has developed rapidly on a worldwide scale
[98]. Global advancement of wind energy has encompassed
deployments on a large scale, such as offshore, floating, and
airborne wind turbines. Apart from facilitating monitoring and
control of wind energy conversion systems (WECSs), SCADA
systems are also prominently being used for operation and
maintenance. Specifically, at the wind turbine level, SCADA
systems are used for control system interface and diagnostics
[99] along with data collection facilities. These data can further
be used for troubleshooting applications, reducing downtime
and improving the reliability and availability of a wind turbine.
On the other hand, at the wind farm level, SCADA is typically
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used for robust security model, verification of grid codes, and
for configured displays to monitor the generation [100].

Apart from these basic tasks, SCADA is primarily used
for condition monitoring (CM) using fault identification tech-
niques to alleviate the operation and maintenance in WECS
[101]. CM systems usually deploy high sampling rate sen-
sors, thereby imposing challenges on data communication,
computation, and storage within a reasonable cost margin.
Nevertheless, it has been shown in [102] that SCADA using a
cyber–physical mechanism has managed to improve the fault
diagnosis over conventional physical methods. A general trend
of reducing the cost and computational and communication
burdens can be to extract the features during critical events
using event-triggering methods [103].

Modeling also becomes a major challenge by integrating
heterogeneous wind turbine models into the cyberlayer. Hence,
different aspects need to be considered for a detailed com-
positional CPS modeling hierarchy [104]. It is also crucial
to assemble the abstract CPS models and information flow
graphs from the sensor networks into the physical models of
mechanical and electrical parts inside wind turbines. Recent
innovations in the sensor network, such as the IoT, have
facilitated interactive sensing, communication, and control,
which could serve as an upgradation to the next-generation
WECS. However, the abovementioned advancements also limit
its operation as it increases the security concerns [105],
thereby mandating a security framework for cyber–physical
WECS. Hence, further research efforts need to consider these
aspects for a cost-effective, reliable, and resilient WECS.

VIII. TRANSACTIVE SMART HIGH-SPEED RAILWAY GRID

One of the application areas where power electronics has
made a tangible societal impact worldwide is high-speed
electric trains. With the burgeoning population, the need for
electrical trains and their faster travel is increasing. This also
translates to increased energy requirements. However, as the
demand for such locomotive power increases, so arises the
challenges associated with operating such infrastructures with
a manageable cost. This is especially important since an
electrical train is a unique spatiotemporal load [106], [107],
as captured in Fig. 21 for the overall energy CPS.

Currently, the cost of electricity usage for a high-speed
electrical train is typically determined by solving an energy-
minimization-based optimization problem. However, recently,
guided by de la Fuente et al. [107], new approaches [108],
[109] based on transactive optimization have been explored,
which have the potential to appreciably reduce the cost of
electricity consumption in such high-speed trains. The trans-
action is essentially between the electrical train and the grid.
In one such approach, instead of minimizing only the energy
consumption, the focus, instead, is on minimizing the weighted
product of the unit cost of electricity and energy demand
(while satisfying the time-scheduling constraints) recognizing
the spatiotemporal navigation of a high-speed electrical train
via the plurality of geographical regions at different instances
of time. As illustrated in Fig. 22, the new approach leverages
the instantaneous velocity profile of the train to vary power

Fig. 21. (a) Illustration of emerging high-speed smart railway grid. (ESO:
electrical system operator and ESS: energy storage systems) of the cyber–
physical electric railway system. (b) Illustration of the smart railway grid
CPS transactive control architecture: the independent system operator (ISO)
controls the transmission grid (TG). The TG feeds the trains (T) via the
railway power system (RPS) after voltage step-down or through a distribution
grid (DG). RPS is controlled by the railway system operator (RSO), which
also coordinates with the ISO and commands any dedicated distributed railway
power plant (RPP)/ESS that can also support part of the train’s load demand.
ACC or area control center supervises the train control and coordinates with
RSO and coordinates with other ACCs.

consumption while ensuring that the average velocity satisfies
the scheduling constraint. In another approach, the transaction
stretches beyond the electrical train and the grid to include
other RT loads and outlines an innovative concept of demand-
shifting-based transactive optimization to further reduce the
cost of electricity usage.

These preliminary works have been conducted using primar-
ily a centralized approach. With the advancements of power
electronics and intelligent microelectronics, such transactive
control can be explored at the power-converter level using a
coordinated CPS approach by further incorporating dispatch-
able and nondispatchable energy sources and extending control
objectives to achieve spatiotemporal multiscale optimization.

IX. REAL-TIME SIMULATION OF SHIPBOARD POWER

SYSTEMS

A. Overview

There is a pressing need for frameworks that provide the
ability to analyze and evaluate cyber–physical SPS in RT
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Fig. 22. Two power and speed curves measured in a high-speed train with
identical trains and time schedules yielding different instantaneous power
profiles and potentially different cost of electricity consumption. This forms
the basis for transactions based on weight cost-energy minimization.

Fig. 23. Top-level diagram of cyber–physical SPS in an RT simulation
environment.

environments. These RT environments are intended to provide
system relevant characteristics that capture the physical-level
(electrical, mechanical, and thermal-fluid) and the cyberlevels
(computer network and computational resources). Fig. 23 illus-
trates some requirements in terms of hardware and software
simulation solutions. The simulation capability in Fig. 23 is
based on developments of the control evaluation framework
(CEF) [110]–[112]. For the physical system, the electrical
and mechanical components are simulated using hardware and
application-specific tools and support interfacing controls and
power devices in hardware-in-the-loop (HIL) implementations.
The HIL implementations are mainly realized using interfaces
that support control HIL (CHIL) and power HIL (PHIL). Sim-
ilarly, the cybersystem is modeled using specialized hardware
and software tools that support the representation of complex
communication network characteristics that exist in deployed
communication networks. Such characteristics include packet
delays, packet drops, and bandwidth limitations. In addition,
the RT simulation environment is designed to support the
integration of external devices, which can be proprietary
external controllers or generic physical network devices, such
as wired/wireless routers, switches, or hubs.

Fig. 24. SoC graphs of distributed controllers during the case study.
(a) (ESM1-ESM1) are these scenarios where no delays are introduced.
(b) (ESM1d-ESM5d) are the scenarios where 100-ms delays are introduced
into the emulated communication network.

The modeling, simulation, and interfacing of SPS com-
ponents, as shown in the framework, can then be used to
define performance metrics. These performance metrics are
determined by the application being evaluated and would
depend on the tests being conducted. In the past, the CEF has
been primarily used to evaluate power and energy management
algorithms specifically tailored for naval applications; various
metrics, such as power quality, ability to serve load, and
controllers’ response (based on communication degradation),
have been used as for evaluating the IPES operation. Overall,
multidomain simulations are valuable for helping ensure evalu-
ation coverage of naval power systems and their operation. The
multidomain simulation provides system-relevant scenarios.
In Section IX-B, an example case study is given to help
describe an SPS RT simulation.

B. Case Study

In this section, a case study is described as a notional cyber–
physical SPS. In this case study, a distributed power and EMS
is deployed in a four-zone MVdc ship power system (see
Fig. 23) [112]. The physical system, i.e., the electrical and
mechanical properties of the SPS, are modeled and simulated
on an RT Simulator (RTS), while sensor data coming from
the devices modeled inside the RTS are sent, through fiber
optic and an FPGA, to the communication infrastructure con-
nected to the respective external controllers. The power system
modeled is a notional 12-kV/100-MW class MVdc distribution
system with multiple energy storage modules (ESMs) with
maximum capacities of 1 GJ and a charging/discharging rated
power of 5 MW and 10 MW, respectively. The power system
also has multiple loads modeled as motors and pulse loads
that try to replicate the operation of an SPS under different
scenarios.

Eventually, the communication network infrastructure of the
SPS will be modeled in a high-performance server running
the Common Open Research Emulator (CORE) to achieve
RT performance [113]. To explore this approach, an Ether-
net switch was modeled in CORE for the example shown
here. Controllers, running the distributed management system,
are connected through Network Interface Cards (NICs) and
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mapped to virtual nodes inside the emulated environment.
The controllers communicate through a virtual Ethernet switch
using DDS and TCP/IP communication protocols.

Fig. 24 shows the results of two scenarios wherein each
scenario five ESMs are controlled in a distributed fashion
and are designed to maintain an 80% state-of-charge (SoC)
consensus value but diverge during operation of pulse loads at
t = 50 s. The differences in the controllers’ responses are
shown when 100-ms packet delays are introduced into the
communication network links connecting the ESM controllers.
The consensus of the distributed algorithm is heavily affected
since multiple SoC measurements present higher oscillations
before reaching consensus.

X. CONCLUSION

This review covers a broad range of topics involving the
confluence of power electronics and CPSs encompassing a
plurality of emerging applications. It provides an overview
of multiple research issues and challenges in these application
areas and the solutions that are being pursued.

To begin with, the issue of vulnerability of CPSs based
on power-electronic converters to cybernetic technologies and
the evolving need for resilience to such vulnerabilities has
been introduced. On a similar note, the reliability of power-
electronic systems that form the backbone of energy CPSs
needs careful consideration and incorporation of emerging
data-centric methodologies, as have been captured in this
article.

Subsequently, a discussion on a self-organizing power-
electronic converter with control intelligence at the edge of the
grid is presented, which can improve the system performance
for large-scale renewable energy integration. Following this,
the protection of MVdc/HVDC systems is discussed with
practical considerations on the power-circuit topologies, such
as MMCs.

Challenges and implementation approaches in e-mobility,
such as fast charging wireless, are highlighted next. On a
related note, cotransmission of power and information in wire-
less (and waveguided) medium are outlined, which may have a
significant impact on mobile and stationary IoT technologies.

Coordinated control is an important feature in modularized-
converter-based CPSs. In this context, a multihop-network-
based coordination scheme for distributed and fast-switching
converters using a 2-D torus topology is discussed with an
eye on latency reduction. Regarding the latter, two comple-
mentary methodologies, based on coordinated control guided
by event triggering (i.e., need-based communication) and
encoding (information- and not data-centric communications)
are outlined next.

The other important aspect of energy CPS is the topological
advances that form the physical layer. TAB converter topology
and smart transformers for systems, such as solar plus storage,
are outlined.

Finally, energy CPS involving smart spatiotemporal high-
speed railway grid (with a focus on transactive optimization
for the cost of electricity usage reduction) and control for
novel and next-generation electrical ships with a focus on RT
simulation of complex SPSs are outlined.

The wide range of research topics presented in this review
article is expected to provide an overview of ongoing research
in power-electronics-based energy/power CPSs and help the
researchers working in this area with the eventual aim of
energy sustainability and smart power solutions.
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