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ABSTRACT 
One of the most important elements for market acceptance 

of new technologies is ensuring reliability.  Nowhere is this truer 
than in the shift from well characterized fossil fuel technologies 
to newer renewable and sustainable energy technologies.  The 
key enabling technology driving these shifts is the development 
of power converters and inverters. Conventional approaches to 
assess reliability of these devices have severe drawbacks. 
Frequent redesigns, often with new parts having no historical 
data, limit the usefulness of methods based on historical data. 
Conversely, physics-of-failure approaches often do not capture 
the most relevant failure mechanisms, including those related to 
operationally induced electrical overstress and software. In this 
paper, we will discuss a revolutionary new reliability assessment 
approach that utilizes advancements in artificial intelligence 
(AI), machine learning, and data analytics, along with new 
techniques for characterizing and modeling failure mechanisms 
to improve power electronics reliability. 

The reliability assessment method combines AI and machine 
learning algorithms for analyzing field failure data, with top 
down models that translate the impacts of grid-connected and 
grid-parallel mode dynamics and mode-transition dynamics on 
power systems, and reliability physics degradation models for 
key failure mechanisms that simulate the effects of both electrical 
and environmental degradation under field operational 
stresses.  These models can be embedded in digital twins created 
specifically to replicate the design of current and new inverters. 
The output of these digital twins reflects the effects of aging and 
component degradation on system performance and will be 
transferable to multiple power electronic systems and platforms. 

Keywords: AI, Digital Twin, Inverter, Solar Energy, 
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NOMENCLATURE 
PV  Photovoltaic 
PoF  Physics of Failure 
RUL   Remaining Useful Life 

 
1. INTRODUCTION 
 The development of Photovoltaic (PV) systems that have a 
lifetime of 20-25 years with minimal maintenance is necessary 
for widespread penetration of solar power. This combined with 
the significant impact of PV systems on distribution grid 
reliability makes it critical to have a dependable method to assess 
reliability and durability of all components in a PV system. 
Figure 1 shows the results of a study [1] of the long-term 
reliability of PV systems analyzed for a duration of 20 years, 
with the probable states defined using the continuous Markov 
process, and the condition of each state discussed. Failures are 
significant after a few years of operation, with the reliability 
gradually decreasing to 81% percent in 20 years. The study 
provides insight into the degradation of component performance 
in PV systems. One of the highlighted issues in the context of the 
reliability of PV systems was failure of the inverter. Inverters are 
the most critical and complex components of PV systems, and 
failures in the inverter lead to compete loss of production during 
downtime. Golnas [2] found inverters to have the highest failure 
rate and contributed the greatest production loss in PV systems. 
According to a more recent study by Jordan et. al. [3], inverters 
still fail more than other components in PV systems, although the 
resulting production loss has decreased. 
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FIGURE 1: THE PROBABILITY OF EACH STATE IN 20 YEAR 
LIFETIME OF PV SYSTEM [1] 
 

Despite the critical importance of the inverter to the PV 
system, current approaches to determine PV reliability have 
significant limitations. One common approach is to use the 
Failures in Time (FIT) of individual components to estimate the 
reliability of the system as a whole. This approach relies on 
significant historical field data to make predictions, which is 
infeasible when component selection and topology design are 
evolving at a rapid pace. New components inherently lack the 
field data required to accurately estimate the FIT rate, and the 
purely empirical nature of the approach invalidates attempts to 
predict reliability under new conditions.  

Another popular approach is to assess reliability through 
Physics of Failure (PoF). PoF assesses reliability based on the 
fundamental mechanisms that cause degradation and precipitate 
failure [4]. The benefit of this approach is that it includes 
causality in assessing reliability, so resulting models can be 
applied to new operating conditions to an extent. However, PoF 
alone is limited by its complexity. Individual components are 
subject to multiple competing failure mechanisms, and 
determining the dominant mechanism and parameters unique to 
each component for a full system yields a model that is infeasibly 
complex. Liivik et. al. [5] and Hacke et. al. [6] developed PoF 
models that were based solely on the switching devices in the 
inverter. These models considered temperature and irradiance, 
but were forced to assume a dominant failure mechanism to 
make the assessment, and they did not account for grid 
interactions. Shen et. al. [7] presented a model for a PV 
microinverter that used PoF to assess the reliability of the 
switches and the DC-link capacitors. While this model was able 
to estimate the reliability of the system considering multiple 
components and 3 different capacitor selections, it was still 
limited to applying PoF to just the switches and DC-link 
capacitors.   

Another key drawback of current PoF models is that they 
only consider the lifetime of the components without 

acknowledging the effect that physical degradation has on 
electrical performance. In essence, current PoF models only 
address the start and end points; they do not address the 
degradation in between, nor do they address how that 
intermediate degradation affects the system’s performance or 
accelerates the degradation of other components, and thus the 
system as a whole.  

Because understanding degradation is so critical to 
accurately assessing system reliability, it is not enough to use 
existing PoF models to predict component life. Testing to end of 
life with electrical measurements at a sufficient sampling 
frequency is needed to build a PoF model that correlates a failure 
mechanism with the electrical degradation that the mechanism 
precipitates prior to end of life.  

This study will develop an integrated approach to assessing 
the reliability of electronic components in PV systems based on 
the development of physics-informed degradation models 
embedded in digital twins and validated with accelerated life 
testing and field data. This integrated approach, depicted in 
Figure 2, merges the information collection, analysis, and 
anomaly detection capabilities of a data driven approach with 
prognostic capabilities of a PoF approach.  

 

 
FIGURE 2: INTEGRATED RELIABILITY ASSESSMENT 
FLOWCHART 

 
2. RELIABILITY APPROACH AND METHODS 

Each element of the integrated approach has an important 
role to play. Fundamental reliability physics provides the basis 
for an intelligent machine-learning framework that can be used 
to screen historical data and accelerate analysis, allowing 
accurate degradation predictions from smaller datasets. It also 
provides the ability to assess the reliability of new designs and 
components that have insufficient field history. Conversely, the 
analysis of historical data allows a system-wide perspective that 
permits the identification of components critical to reliability, 
and dominant failure modes and mechanisms. This limits the 
number of components, failure mechanisms, and circuit 
configurations that need to be fundamentally modeled, 
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significantly reducing the complexity of a bottom-up modeling 
approach. Furthermore, the engineering knowledge gained from 
both the historical data and reliability physics analyses can guide 
the selection of components and system signals for condition 
monitoring, thus limiting the number of sensors needed. 

 
2.1 Data Mining and Analysis 

The first step in this study will be to collect data from a range 
of inverter types in a variety of environments that will be mined 
to determine the most commonly failed components and 
dominant failure modes. In addition, a physics-based top-down 
modeling approach will be created that translates the impacts of 
grid-connected and grid-parallel mode dynamics and mode-
transition (e.g., islanding, blackstart) dynamics on the most 
vulnerable PV-inverter components in terms of electrical, 
thermal, and humidity-based stress parameters.  

In the top-down approach, several stress-producing factors 
are analyzed. The different data that are sourced in chronological 
AI analysis are from forty-six grid-following three phase 
inverters of Florida International University’s microgrid. The 
five years of historical data consist of DC voltage and DC current 
on the input side, and three-phase AC voltage, three-phase AC 
current, frequency, and power on the output side. The output data 
is analyzed by statistical and multiple machine learning 
algorithms to detect anomalous outputs over time. Two 
techniques which are suitable for identifying anomalies in the 
inverters are isolation forest and decision tree algorithms. 
Isolation forests are unsupervised learning algorithms, and 
therefore do not need any labels or target variables prior to 
classifying anomalous data. Regression analysis can also provide 
outliers in DC and AC current for weather parameters like 
temperature and irradiance.  

Anomaly-related timestamps are vital to correlate the 
stresses on the inverters to alerts or warnings, and narrow down 
the number of critically related alerts. Stress also comes from 
thermal cycling and power cycling on a daily basis as the inverter 
powers off at night. The intermittencies in the irradiance due to 
cloud coverage are another factor to add to these external stress 
producers, and will be analyzed with a decision tree algorithm in 
this work to further narrow down the degradation-related 
failures.  The findings from this top-down data mining and 
classification approach are further strengthened by feeding in the 
actual maintenance service records information of inverter 
failures either from components, a circuit board, or the entire 
inverter. The maintenance records are a vital source of 
information as they present the historical health of the inverters 
and assist in pinpointing the malfunctioning inverter and its state 
at the time of failure. Going deeper, the validation of the machine 
learning approach is fine-tuned to get desired control algorithm 
parameters by utilizing the above information. 

This information will then be used alongside a bottom-up 
component-level PoF reliability tool to ascertain a probability-
of-failure matrix and acceleration factors for these vulnerable 
solar inverter components and the inverter as a whole when 
subjected to different operating conditions. This will be done 
using the embedded physics-informed degradation models, 

which are accessed from the generated database of PoF models. 
These models may be straightforward differential/algebraic 
analytical models representing the fundamental aspects of the 
degradation, but, in cases with limited PoF data, they can also 
employ pattern recognition and machine learning tools applied 
to field data. 

 
2.2 Accelerated Environmental Testing 

This study will include environmental stress testing similar 
to that of previous studies, but the tests will not be terminated 
early based on a semi-arbitrary failure threshold. This is in part 
because it is necessary to observe the final stages of degradation 
for the devices under test to build an accurate model. But even 
more importantly, the threshold for failure is unique to the 
system in which the device is deployed, not just to the device 
itself. One way in which this study differs from previous studies 
is that the test results will not be used to curve-fit a standard PoF 
model to the data so that others can estimate their lifetime based 
on different usage conditions. Instead this model will be 
correlated to the electrical performance of the devices along the 
electrical degradation curve. Between these two, the relationship 
between physical damage and electrical degradation can be 
derived, and this relationship can be used to understand the 
extent of physical degradation from the electrical test data, from 
which point one can extrapolate the RUL. The benefit of this 
approach is that it builds the foundation for other digital twins to 
be built with reduced testing requirements. The model for the 
electrical degradation varies significantly based on the test 
conditions, as is shown in Figure 3 [8], and purely data-based 
modeling does not allow for a translation between conditions. 
This means that a lot of testing would be necessary to build the 
twin without a PoF foundation. In this regard, the PoF approach 
reduces the amount of testing required because data from 
previous tests can be translated more readily for use in future 
digital twins.  

 

 
FIGURE 3: ELECTRICAL DEGRADATION CURVES OF FILM 
CAPACITORS UNDER DIFFERENT TEST CONDITIONS 
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2.3 Combining Data and Testing in the Digital Twin 
The PoF-informed models generated from the environmental 

stress tests will be fed into the digital emulation model that forms 
the simulated half of the digital twin. Following component-level 
testing to build the degradation models, a scaled-power 
prototype inverter will be developed and assembled as the 
hardware half of the digital twin. Figure 4 shows the flowchart 
for this digital twin process. 

Essentially, the hardware comprises a programmable dc 
source that emulates the photovoltaic energy source, which in 
turn, feeds a two (or single) stage inverter. The inverter feeds an 
application load that emulates to the extent possible application 
scenario. The operation of the inverter switches that controls the 
energy flow from the source to the load is achieved using an 
embedded controller (e.g., DSP/FPGA) based on the feedback or 
sensing of the inverter states. 

 

 

 

 
FIGURE 4: A TWIN EXPERIMENTATION/MODELING 
APPROACH TO RELIABILITY ANALYSIS OF THE INVERTER 

 
Now, to realize the digital twin, the control input fed to the 

physical inverter hardware is also fed to the software model and 
this process is continued until the responses of the model and the 
inverter are close enough, thereby yielding the digital twin. Such 
a software model could be physics based, data based, or a hybrid 
combination of the two. A key advantage of the physics-based 
model is reduced convergence time while the data based (e.g., 
machine learning or AI) approach is more generalizable at the 
cost of enhanced need for computational and data overhead. The 
surrogate approach leverages the proven physics-based model 
and uses machine learning or AI based approach to reduce model 
structural uncertainty and reduce computational overhead. The 
inverter prototype will be subjected to performance 
characterization before, during, and after accelerated testing. The 

results from these tests will be used alongside field data on 
deployed inverters to validate the digital half of the twin, which 
will then be incorporated into software that manufacturers can 
use to make better informed reliability assessments for PV 
inverters. 
 
3. CONCLUSION 

In this paper the limitations of current techniques to assess 
reliability of PV inverters was discussed, and a solution was 
proposed. The proposed approach combines physics-based 
modeling, which maintains causality in the model and allows 
for accurate translation between test and use conditions, with 
advanced data mining to allow for reduced complexity in the 
model. The end result is a digital twin model that evaluates 
performance, durability, and lifetime.  
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