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Abstract—In this work, a top-down analysis is carried
out to investigate the impacts of environmental factors on
the health, and hence on the reliability, of solar inverters
(SI). Five years of real field data from 46 string inverters
in a 1.4 MW Photovoltaic (PV) plant located at Florida
International University (FIU) are used for the analysis.
Collected data is classified and examined based on inverter
faults, failures, and stress conditions using the classification
and regression tree (CART) algorithm. Results have shown
that inverter performance is highly correlated to ambient
conditions, i.e. sunrise and sunset timing, relative humidity,
and irradiance profile, and therefore adequate specific
ventilation management can be a useful tool to mitigate
some major inverter health issues. Triggered by this study,
a prognostic analysis from the information in service tickets
and machine learning (ML) outcomes will be carried out
as future work.

Index Terms—Solar Inverter Reliability, Real-field Data
Analysis, Remote Condition Monitoring, CART algorithm

I. INTRODUCTION

Renewable energy technologies, particularly solar en-
ergy, has a substantial impact on distribution grid charac-
teristics due to their increased penetration. The failure of
the solar inverter is one of the most prominent difficulties
in the context of renewable energy system reliability.
Thus, it is of high importance that the solar inverter,
which controls real and reactive power injections of PV
panels, be analysed for degradation tendencies. Overall
reliability of SI is a complex problem to address since
it involves large number of internal active and passive
components and their individual reliability indices and
failure mechanisms [1], [2].

To address this problem, different approaches have
recently been taken which incorporate classification and
machine learning based capabilities [3], [4]. The authors

in [5] implement a systematic approach where ML
text recognition is utilized to identify inverter related
common failure modes. Additionally, because PV system
data may be scattered, clustering algorithms can be par-
ticularly useful for deploying ML techniques [6]. In the
work [7], decision tree algorithms have been investigated
to classify PV power production under variable weather
conditions and application of different state-of-art ML
techniques on this regard is also compared. The authors
in a sensor-based research effort, have explored a python-
based library to detect anomalous events for grid-tied SIs
[8].

In a similar work, an LSTM autoencoder technique
was studied by the authors in [9] as a prognostic tool for
the events in energy systems. On the other hand, environ-
mental conditions are another highly varying factor for
PV power systems. This is well addressed in [10], where
the authors have predicted weather related interruptions
from statistical data driven-models. Furthermore, a hy-
brid model to further improve PV generation estimation
was developed and validated using several case studies
[11] and power quality profiles [12]. Moreover, different
architectures of commercially available PV monitoring
systems, as described in [13], can be studied to get an
idea on the working setup presented in this paper.

In this work, a large amount of reliability and envi-
ronmental field data is mined using analytical methods.
Next, field failures are classified into similar failure
mechanisms and site groups based on prior field failure
analysis with different environmental and operational
conditions. Therefore, the objectives of this work lies
in examining different inverter faults, classifying them
based on defined criteria and performing CART algo-



rithm based correlation study of key inverter parameters
with weather data. The key contributions of the work are
as follows: 1) finding evidences that SI incur different
stress levels over a day’s 24 hours time-span, 2) deter-
mine if stresses vary with solar irradiance variability and
temperature rise, 3) inner stresses are transformed into
electrical domain mostly in DC current carrier related
alerts, events, and codes.

The rest of this paper is organized as follows: Section
II outlines the FIU power system infrastructure and an
overview of the data sources; Section III explains the
methodology used for analysis and Section IV presents
the key results and provides some discussions on their
significance. Finally, Section V concludes the paper and
provides details of future work.

II. CASE STUDY OF FIU SOLAR PLANT

A. 1.4 MW Grid-Tied Solar Power Plant

The grid-connected 1.4 MW PV power plant at FIU
has the capability to imitate mode-changing dynamics
at the point of common coupling (PCC). The overall
setup of the plant is presented by Fig. 1 and 2 [12],
where the locations of recorders and data acquisition
systems (DAS) are clearly shown. The data input to this
work is collected from PQ recorders and DAS, which
are operational in field from 2016 onward.

Fig. 1. Location of 46 grid-following solar inverter units

At a glance, Table I holds the setup and capacity
information of FIU’s plant. The accumulated AC voltage,
AC current, harmonic distortion, flickers, frequency and
power factors are logged in PQ recorder on 1 min times-
tamp interval. It also do continuous logging of significant
event changes and abnormalities, which are translated to
warning and fault messages. On the other hand, 46 units
of three phase, grid-following string inverters’ input-
output data, codes, alerts are logged in DAS in similar 1
min time stamp. DAS is also responsible to deliver meter

measurement and weather information on irradiance,
temperature, and humidity percentages. These data are
analyzed over the time and occurring frequency in this
work.

B. Data Sources

The data from three main sources are analyzed in
this work. Irradiance, ambient temperature, PV panel
temperature, relative humidity, and lightning are the
environment data considered for this study. These data
points are logged by DAS. On other part, SI’s input (DC
voltage and current), output (3-phase AC voltage and
current), and warnings, alerts and faults data of each
individual inverter are used for the analysis. Further, the
minimum, maximum, and average values of three phase
output voltages and currents at the PCC and their flicker,
total harmonic distortion (THD), and power factor data
are taken from the PQ recorder. Next, service main-
tenance records consisting detailed failure analysis are
considered into conclusiveness of deep learning based
correlation study among environmental factors, alerts
distribution and field failures.

Fig. 2. Revolution Wireless PQ Recorder location (LT sided) and
DAS location for measuring time series data from inverters, meter and
weather station and securely stores in a cloud server

III. RESEARCH METHODOLOGY

The SI of aforementioned 1.4 MW grid-tied solar
power plant is considered for this case study. A unique
combination of data analytic driven diagnostics and top-
down system failure analysis have been used in this
work. In the first part of it, long-term field performance
data, inverter alerts are analyzed to assess the inverter
stress levels. Therefore, environmental data which are
found highly correlated, are analyzed on their role in
creating stresses on inverters. Based on the alert distribu-
tions, weather variation and the chronological events of
inverter field failures, an approach is taken to benchmark
the inverters. The concluding part is attempted by iden-
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TABLE I
1.4MW POWER PLANT SETUP LOCATED IN FIU

Total Module Module Capacity per Inverter Inverter Inverter Capacity Net Capacity Net DC/AC
DC KW Size (W) Number Inverter (kW) Type Size (kW) Number Inverter (kW) Module (kW) Ratio

1412.33 315.46 2x1520 25.22 3 Ph 24 6 144 151.321 1.05
315.46 1x1340 31.525 3 Ph 24 40 960 1261.012 1.31

tifying some root causes and their possible mitigation
plans.

IV. RESULTS AND DISCUSSION

The research methodology laid out in section 3 is
conducted and the following results were obtained. Initial
subsections have demonstrated the analysis on inverters
alerts distributions. Afterwards, a CART algorithm-based
results are presented to identify the correlation between
inverter DC voltage, current, environment impacts, and
grid power which can be utilized to conduct exception
detection leading towards performance fault estimation.

A. Historical Alerts From Inverters

The complete set of alerts from 2016 to 2022 are
taken into consideration. This is for generating different
insights such as maximum alert generating inverters,
distribution of time between alerts, and time required to
clear those alarms and codes. A set of communication
related faults are excluded from analysis, with the fact
that, there origin is not related to inverters rather to the
network providers.
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Fig. 3. Alert generation histogram per inverter

From Fig. 3, it is evidently that the top most erroneous
inverter is inverter 34, followed by 45, 7, 29, and 40
in descending order. These 5 inverters will be in the
spotlight of the further level of discussion in next steps.
There are several alert names from historical data, whose
distributions are shown in the Fig. 4.

The two most common alert sources are inverter and
device communication alerts as shown in Fig. 4. The
second highest failures originate from intermittent com-

Fig. 4. Inverter alerts distribution histogram

munication failures and are excluded as stated earlier.
The highest alerts are from inverters themselves, among
which inverter 34 was the highest contributor as seen
from Fig. 3. Its alert distribution is brought under study
on this behalf and is presented in histogram plots of Fig.
5. The duration of faults and time before alert reset are
plotted based on their frequency levels. The mean of
power-related alerts of inverter no. 34 has a standard de-
viation as low as 1448. This high concentration of alarms
are mostly DC attribute related, which is discussed in
succeeding sections.
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Fig. 5. Inverter 34 non-communication fault distribution (2016 to
2022)

B. Historical Alerts from Inverters’ Dedicated Alert
Server

Another alert server’s data is analysed from a more
recent time period of Dec 2021 to Mar 2022. The
purpose is to add additional information from the inverter
cluster controller which is collecting aggregated PV data
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from all 46 inverter units in real-time. The findings from
this data can be seen in Fig. 6. The distribution pattern
suggests that, interference device is the most common
fault propagated from the 46 inverters in period of inter-
est. The intended inverter’s authorized troubleshooting
manual has described this fault as a consequence of
temperature rise issuisAccording to the manual [14],
with interference device alerts, the inverter would stop
due to excessive temperature and corrective measures
such as to clean the fans, to ensure sufficient ventilation
are suggested.
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Fig. 6. Alert distribution from inverters’ dedicated alert server

Fig. 7. Fault reporting inverters with fault counts (Dec, 2021 to Mar
2022)

In relating the inverters with the produced alerts, the
results from Fig. 7 depicts that, the top three fault
reporting inverters are inverter numbers 15, 17, and
27 . Among these three, inverter 17 was permanently
failed as per the maintenance ticket information, showing
that inverter 17 has a 6411 error code: ’Interference
of Device’. Services reports from vendor described this
code as related to lack of ventilation and temperature rise
issues, where replacement is performed as permanent
solution of it.

C. Inverter Alerts on a Day (24 hours) Perspective

The purpose of this sub-investigation is to observe the
role that sunlight plays in creating stresses on the power
circuit from the standpoint of alert/fault/warning times-
tamps over a 24 hour period. It is taken as an assumption
that semiconductor devices, filters, and other elements
which are comprising the core circuit of the inverters,
produce thermal stresses when conducting current from a
cold state [15]. In a similar way, stresses could be present
during times of low irradiance where current flow may
not be uniformly proportional as found in production
power profiles as seen in Fig. 9.

Inverters’ alerts server data is plotted per hour (aver-
age) over a 24 hour time span in Fig. 11 to investigate the
highest stress time of the day using hourly increments.
Around 7 A.M. the irradiance passes the threshold to
activate all the Insulated Gate Bipolar Junction Tran-
sistors (IGBT) from a cold state, resulting in more
alerts generated at this time. Most of the alerts are
related to suddenly raised temperatures, electrical arcs,
and insulation related problems. In the middle part of the
day, alerts frequency is relatively stable, however when
the sun sets, the stresses are shown to be increased on
the inverter components resulting in higher amount of
alerts around 7 P.M. of the day.

D. Environmental Impacts and Correlation Study

Stresses on inverters can be inferred from generated
alarms or faults, as seen in Figs. 3, 4, 6, and 11. However,
the source of these stresses is a resultant of environ-
mental conditions to a great extent. Different aspects of
the environment are considered, where weather patterns
and seasonal changes as well as overnight moisture and
dust concentrations are crucial factors to consider in
this correlation study. Their relationship in how they
impact PV production through inverters is complex to
analyze and requires special techniques. In this work,
inverter DC voltage correlation with environmental data
is investigated by CART algorithm.

Results from the use of this technique are shown
in Fig. 8 where the color concentration suggests that
inverter DC input voltage has a negative correlation
with humidity and very high positive correlation with
irradiance. In Fig. 12, the top five correlating factors for
inverter DC input voltage are extracted from the over-
all findings which are, inverter DC current, irradiance,
module Temperature, ambient Temperature, and weather
condition.

V. CONCLUSIONS AND FUTURE WORK

In this work, an aggregated inverter alert list of six
years is studied towards the goal of finding logical corre-
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Fig. 8. Correlation study of inverter DC input with weather data
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Fig. 9. Top five features in predicting inverter DC voltage

Fig. 10. Inverter DC input current with Irradiance profile over 24 hr.

lations with environmental data and inverter input-output
characteristics. Depending on the configuration of the PV
system, a single inverter’s failure or reliability issues can
cause a significant loss in total energy production. Thus,
rigorous data point analysis and machine learning-based
classification strategies have shown that, the inverter
failures are highly correlated to stresses generated in
specific periods of time during a day. Relative humidity
and irradiance levels combined with their intermittent
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Fig. 11. Average fault reporting distribution over 24 hours of a day
(Dec 2021 to Mar 2022)

behavior (and hence, changing ambient temperature) are
key factors behind inverter warnings. Furthermore, the
actual failure mechanisms have been found to be devel-
oped from DC current-related parameter warnings which
is negatively impacting inverters’ internal temperature
rises. The findings are cross verified by the service
records provided on the 46 inverter units. The field
replacement of inverter no 17, and 34 and their failure
analysis reports have been supportive to the conclusion
that, physical relocation, scheduled ventilation, and de-
humidification can be viable preventive measures against
these failures The time shifting temperature rises also
motivates the present research work for investigating the
sun exposure of the outdoor inverters over the time as
one of the next steps. This could aid the finding on the
basis of the fact that, time bound ventilation will even-
tually decrease the stresses on component of inverters,
hence increasing the lifetime of it. Lastly, this is a top-
down approach, so more failure case studies are required
to be done with the aid of unsupervised machine learning
tools, which is a future scope. Eventually, component
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based stress and failure prediction model development
is the broader part of this research, in securing the
reliability of inverters.
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