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Abstract— Electricity demand of electric railways is a relatively
unexplored source of flexibility in demand response applica-
tions in power systems. In this article, we propose a trans-
active control-based optimization framework for coordinating
the power grid network and the train network. This is accom-
plished by coordinating dispatchable distributed energy resources
(DERs) and demand profiles of trains using a two-step opti-
mization. A railway-based dynamic market mechanism (rDMM)
is proposed for the dispatch of DERs in the power network
along the electric railway using an iterative negotiation process,
generates the profiles of electricity prices, and constitutes the first
step. The train dispatch attempts to minimize the operational
costs of trains that ply along the railway, while subject to
constraints on their acceleration profiles, route schedules, and
the train dynamics, and generate demand profiles of trains and
constitute the second step. The rDMM seeks to optimize the
operational costs of the underlying DERs while ensuring power
balance. Together, they form an overall framework that yields
the desired transactions between the railway and power grid
infrastructures. This overall optimization approach is validated
using simulation studies of the Southbound Amtrak service
along the Northeast Corridor (NEC) in USA, which shows a
25% reduction in energy costs when compared to standard trip
optimization based on minimum work and a 75% reduction in
energy costs when compared to the train cost calculated using a
field dataset.

Index Terms— Power grid, railway dispatch, renewable inte-
gration, social welfare, train dispatch, train network, trajectory
optimization.

I. INTRODUCTION

A. Motivation

MODERN electric trains can both demand power from
their traction system for locomotion and inject power

back into the electricity network through regenerative braking,
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virtually enabling them to store electricity in the form of
kinetic energy [1]. The power profile of a train along a route is
in many cases determined by the conductor based on training
and experience, attempting to meet a given schedule with little
regard to the varying electricity price along the route. In this
article, we propose an alternate operation methodology that
consists of coordination of train schedules and the dispatch of
rail-side distributed energy resources (DERs) and leads to a
determination of prices and schedules of power consumption
for the trains and power generation for the DERs.

Together, this coordinated operation is shown to minimize
the overall electricity cost incurred by the trains. As this
coordination occurs through a transactive framework between
the train dispatch and the dispatch of railway agents such as
DERs, this leads to a transactive control of the two intercon-
nected systems of train network and the power grid network,
similar to the transactive controller in [2] and [3]. In addition,
this operation methodology accommodates complex traction
and train infrastructure ownership structures. This can include
systems where multiple train operators traverse tracks owned
by various railway operators that can in turn be customers of
numerous electric utilities and rail-side DER operators.

B. Literature Review

Related work that has addressed trip optimization in
rail networks can be found in [4], [5], [6], [7], and [8].
Wang et al. [4] provided a summary of the trajectory planning
problem in railway systems. Optimal trajectory planning for
electric railways can be found in [5, Ch. 3 and 4], where
pseudospectral methods are used to determine optimal railway
operation based on models of train dynamics. This work builds
upon the work minimization literature developed in [6] and [7].
Finally, Eldredge and Houpt [8] developed a control system
to reduce fuel use in freight locomotives. In all of these lines
of research, the overall objective is to minimize energy use or
work done by the train, rather than the cost of the electricity
to the infrastructure manager, an important component of our
proposed scheme.

A major driver that allows the proposed transactive coor-
dination framework between the train network and the power
network is the transformation of the latter in recent years. This
has been due to the explosive growth of renewable energy
sources [9] and demand response [10], collectively denoted
as DERs. The increasing footprint of these resources enables
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them to be dispatchable and to enter into a transactional frame-
work where incentive information (pricing) and commitment
decisions (quantity) can be iteratively exchanged and arrived
at an optimal solution. This iterative transactional framework
is denoted as dynamic market mechanisms (DMMs) and has
been explored in [11], [12], [13], and [14]. The origins of
transactive control are very much rooted within the energy
application realm, as the ideas of using an incentive signal
to alter the behavior of demand-side customers in power
systems can be traced back to Schweppe et al.’s paper [3]
on homeostatic utility control. A large-scale demonstration of
this concept can be found in [2] where electric systems with
high renewable adoption were considered and shown to meet
demand reduction objectives. The DMM-related results in [11]
show that DERs can engage in market transactions at the
tertiary control level and ensure grid objectives through a hier-
archical framework, with asymptotic stability, which results in
convergence within a region of attraction. Exactly, how these
market mechanisms can be integrated into a real-time market
and a regulation market together with secondary control-based
automatic generation control (AGC) was explored in [14].
Focus was placed on demand response compatible assets
in [12], which provides sufficient conditions for convergence.
The implications of DMM in the context of a combined heat
and power microgrid were explored in [15] and [16].

Key differences with other demand response applications
are tied to the spatiotemporal constraints of the overall
grid-railway optimization problem. Other DR applications are
posed with assets that are spatially constant, whereas trains
enter and depart area control centers (ACCs) tied to the electric
infrastructure that powers them. From the optimization lens,
the force balance constraint of train dispatch introduces a
conservation equation that is not common in DR.

C. Contributions and Article’s Organization

In this article, we will enable the coordination of various
DERs in a power network that is located along the railway net-
work through the use of a DMM and denote it as railway-based
DMM (rDMM). The main challenge in the design of the
proposed transactive framework is to coordinate the objectives
of the two networks. The points of intersection between these
two networks are the need to optimize operational costs and
the need to ensure physics-based constraints such as power
balance, capacity and operational limits, and train kinematics.
A combined optimization problem subject to all underlying
constraints can be posed and used to determine the train sched-
ules and prices but can prove to be quite intractable due to the
complex nature of the constraints, space- and time-dependent
constraints with various intractable coupling mechanisms. We,
therefore, adopt a two-step approach where the first consists of
railway dispatch of schedules and electricity prices for a given
train-demand profile, and the second consists of train dispatch,
which determines the train schedules for a given electricity-
price profile.

The railway dispatch determines, along each section of
the track, the electrical output of each generator, the output
of all storage assets, and the output of all cogeneration

assets for a given set of profiles of power demand from
trains and renewable generation. The train dispatch solves the
trajectory optimization problem, i.e., the velocity profiles of
the trains, through an energy cost minimization subject to
acceleration limits and kinematic constraints. Our thesis in
this article is that such a two-step optimization can enable
effective coordination between the power grid network and the
railway network. In particular, we will show that the two-step
optimization will lead to a significant reduction in energy costs
through simulation studies. While the methods utilized for
solving this two-step optimization are fairly straightforward,
the main contribution of this article lies in the novelty of
the proposed approach for trip optimization in electric rail-
way networks. The second contribution of this article is a
demonstration through a case study of the Amtrak service
along the Northeast Corridor (NEC) in USA and composed
of multiple sections and DER topologies. To our knowledge,
such a transactive approach, which can be viewed as demand
response using the flexibility in power consumption of trains,
has not been suggested thus far in the literature except for
[17] and [18], where we presented preliminary results using
this approach.

The remainder of this article is organized as follows.
Section II describes the problem faced by the railway and train
operators in scheduling DERs and trains along the railway
system. In Section III, we break out the railway dispatch,
i.e., dispatch of the generators and other assets along the
railway track based on the estimated renewable generation,
traction electric demand, and electric and thermal loads for
each section of the electric railway. Section IV establishes
the dynamic model of an electric train and formulates the
energy cost minimization problem that needs to be solved
by each train traveling along the electric railway. Section V
describes the integrated transactive control methodology that
iterates between the railway dispatch and the train dispatch
solutions to determine the price signals and corresponding
dispatch profiles of the agents and trains that minimize the
operational costs of the entire system. Section VI presents a
case study of the Amtrak service and validates the proposed
transactive controller. Realistic accommodation of data has
been carried out in this case study, including incorporation
of the actual electricity prices from the wholesale market,
actual load profiles, realistic train data, and renewable energy
profiles available in the public database. Using this case study,
we compare our approach with both the current train profile
using field data and an optimization framework based on
minimization of work. The concluding remarks and future
research extensions are discussed in Section VII.

II. PROBLEM FORMULATION

Electric railway systems can be owned and operated by
multiple parties. In some systems, the track and electric system
that powers the trains are owned by an entity that charges a
fee for the utilization of their facilities. This entity is typically
responsible for the maintenance of the track, procuring the
electric power to feed the trains, dispatching rail-side DERs,
and controlling traffic along the system. These entities are
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commonly known as railway operators. We will denote train
operators as those who are in charge of the use of the track
based on their projected train schedules, maintain and dispatch
the trains, and pay usage fees to the various railway operators
along the tracks used by their trains. The problem that we
consider in this article is a combined optimization of both the
railway dispatch and the train dispatch, with railway operator
and train operator acting as the interface between the grid
network and the train network (see Fig. 4 for an overall
schematic).

In Section II-A, we will discuss how railway operators
procure electricity and thermal energy from wholesale energy
markets, distribution operators (i.e., utility companies), and
DERs. In Section II-B, we formulate the underlying opti-
mization problem where the cost is social-welfare-like and
depends on the costs incurred by the DERs, the electrical and
thermal loads of the railway system, and the electric trains. The
resulting solution will then provide optimal profiles for various
generation assets as well as the train consumption/generation
profiles, i.e., the railway dispatch and the train dispatch.
Deriving such a solution, however, proves exceedingly difficult
to solve due to the presence of several dynamic nonlinear
constraints and the fact that the timescale required to solve the
trajectory optimization problem needs to approach real time,
especially for the train dispatch. This motivates the two-part
solution proposed in Sections III–V.

A. Traction System Preliminaries

A wide range of traction system architectures and tech-
nologies have been developed for electrified railway systems,
across low frequency (dc, 16.6, 20, and 25 Hz) as well as
industrial frequency (50 and 60 Hz) networks that are pow-
ered by overhead and third rail traction distribution systems.
In addition, electric trains have been both powered by rail-side
generators as well as grid-tied systems. In some scenarios,
electrical connections to a large-scale electricity distribution
or transmission system are complemented with distribution
lines that travel along the rail and can be designed such
that they improve the reliability of the traction system by
providing redundant power supplies to the traction substations
feeding the traction system. These various architectures have
a direct impact on the flexibility of the demand of the train
and therefore a possible energy cost reduction.

A typical architecture of energy procurement and dispatch
that occurs along the electric railway is shown in Fig. 1
and will be adopted for the discussions in this article. This
architecture is typically adopted in deregulated electricity
markets such as Amtrak in the Northeastern United States
and will be used in the case study presented in Section VI,
that is, we assume that railway operators face delivery charges
as distribution-level customers of the various electric utilities
that own and operate the distribution systems that feed railway
facilities. However, due to the energy requirements and the reg-
ulatory setting in which electric railways procure energy, rail-
way operators could access wholesale markets for electricity
supply. In addition, we assume that third parties could invest
in rail-side DERs, seeking to provide energy services to the

Fig. 1. Summary of the existing activities (power, cost, and information
flows) between the four entities (wholesale energy markets, retail energy
sales, railway dispatch, and train dispatch) to power within the electric railway
network.

railway operator. Competitive retail sales of electricity from
power marketers [19] and on-site power purchase agreements
(PPAs) offered by Energy Services COmpanies (ESCOs) [20]
are both established and growing energy procurement mecha-
nisms for commercial companies, including electric railways.

B. Overall Constrained Optimization Problem

With the architecture chosen as in Fig. 1, we now introduce
a problem formulation for energy procurement and dispatch
for optimal grid-railway interaction. A first component of this
problem formulation is the ACCs (see Fig. 1) managed by
railway operators. An ACC is charged with serving the electric
railway traction system, limited to a portion of contiguous
electric railway with the property that marginal injections
or demands for power have the same cost to the operator
for all time t . Along this portion of the track, all rail-side
DERs and trains that interface with the traction system are
enabled to provide price and quantity information regarding
their dispatch and are compensated and charged based on
their actions by the ACC. A railway operator manages each
ACC with the objective of reducing overall operational costs
while maximizing the value of the DERs along the track and
meeting all thermal and electric loads in the system, that is, the
overall objective of the railway dispatch is to schedule energy
resources, which includes trains, so as to minimize the cost
of energy resources and trains along the railway system. Such
an optimization has to be carried out subject to the various
constraints of the grid and railway networks.

More formally, the underlying problem is the dispatch of
electric railway power systems across N ACCs in an optimal
manner. This includes the electric traction loads of Ln trains,
with power profiles denoted as Pl

n(τ
l
n) for the electric profile

of train l in ACCn over the time interval τ l
n ∈[t l

n,0, t l
n, f ]. The

railway operator is charged for its electric loads at a rate λn(t).
On the generation side, we consider Dn dispatchable gen-

erators (including DERs and electric utility imports) at each
ACCn with electric and thermal power profiles Pde

n and Pdth
n .

For compactness, we will use Pd
n , a tuple of the electric and

thermal generation for each generator d . Dispatchable agents
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incur a cost Cd
n (P

d
n ), which is private to their owner and

operator.
All other electric and thermal power demand in the electric

railway system, such as the thermal conditioning and lighting
loads at passenger stations, are considered price-inelastic and
are included within the power balance constraints of the
problem for each ACCn as Pe

n and P th
n but are not included

in the objective function due to their fixed nature.
Given that the utility of the trains and generators is fixed,

the social welfare maximization problem, which is commonly
used for economic dispatch problems in power grids, reduces
to a cost minimization problem with two terms in the objective
function, the generator cost of generating the electricity and
the energy cost of operating the trains.

With the above definitions, the overall grid-railway opti-
mization can thus be posed

min
Un∀n∈{1,...,N}

N∑
n=1

(
Dn∑

d=1

Cd
n

(
Pd

n

)
(1)

+
Ln∑

l=1

∫ tl
n, f

t l
n,0

Pl
n(ψ)λn(ψ)dψ

)

s.t.
N∑

n=1

(
Dn∑

d=1

Pde
n + Pe

n

)
+

Ln∑
l=1

Pl
n = 0 (2)

N∑
n=1

(
Dn∑

d=1

Pdth
n + P th

n

)
= 0 (3)

Pd
n ≤ Pd

n ≤ Pd
n (4)

ml ẍl + FDF,l(ẋl)+ ml g sin(αl(xl))

= FT,l

(
Pl

ẋl

)
(5)

Pl(xl) ≤ Pl ≤ Pl(xl) (6)

FT,l(ẋl) ≤ FT,l ≤ FT,l (ẋl) (7)

al ≤ ẍl ≤ al (8)

vl(xl) ≤ ẋl ≤ vl(xl) (9)

tl,a(s) ≥ tl(s), tl,d (s) ≤ tl(s)

s ∈ {0, . . . , D} ≥ BF (10)

where Un is a decision variable set that includes P D
n =

{Pd
n ∀d ∈ {1, . . . , Dn}}, PT

n = {Pl
n(τ

l
n)∀l ∈ {1, . . . , Ln}}, λn

and τn = {τ l
n∀l ∈ {1, . . . , Ln}}. It is clear that the objective

function in (1) is composed of the sum of the cost of the
dispatchable generators (which we will denote as agents) and
the energy expenses of the electric trains. These two costs are
the fundamental building blocks of the two-part rDMM devel-
oped in Sections III–V. When broken down into the individual
ACCs, the first term captures the railway dispatch problem
with fixed loads, subject to constraints (2)–(4), which represent
nodal electric power balance, nodal thermal balance, and DER
agent capacity limits, respectively. The notation and intricacies
of each constraint are fully defined in Section III. The second
term corresponds to the train dispatch problem, subject to
constraints (5)–(10), which represent train dynamics, electric
motor power limits, traction force limits, acceleration limits,

velocity limits, and schedules, respectively. The notation and
intricacies of each term are fully defined in Section IV.

The optimization problem as in (1)–(10) is difficult to solve,
highly intractable, and poses several challenges. We note that
in the decision variables in the constrained optimization prob-
lem in (1)–(10) include power profiles P D

n of the dispatchable
agents, which is a standard feature in optimization problems
in power systems. It should be noted that there are additional
decision variables, which correspond to the power-demand
profiles of trains, PT

n , and the price of electricity, λn , both of
which vary with the nth ACC. The final and the most important
point to note is that the set of decision variables also includes
τn , which corresponds to the time intervals during which the
trains traverse each of ACCn . It is clear that there is further
coupling between these additional decision variables, as the
power profile Pl

n directly affects the absolute time instances at
which train l traverses all of the j th ACC, j ∈ {n+1, . . . , N}.
In addition, this coupling is nonlinear and highly complex.
It is clear, however, that all these quantities, P D

n , PT
n , λn , and

τn ∀n ∈ {1, . . . , N}, are all decision variables that affect the
overall cost and therefore have to be included simultaneously.

The second challenge introduced by the optimization prob-
lem is that its solution requires that all of the traction sys-
tem agents share their private cost information C

(
Pd

n

)
to

appropriately capture and minimize the overall system cost.
This feature would likely inhibit private investment in rail-
side DERs. The timescale of electric train dispatch may not
individually align with that of the ACCn dispatch. Trajectory
optimization of electric railway power profiles occurs in the
seconds’ timescale, whereas energy asset dispatch is unlikely
to be used at a timescale faster than 5 min. Most critically,
the trains are entering and exiting each of the ACCn values at
different times that are dependent on the pricing signal.

All of the above challenges make the problem almost
intractable since they introduce nonlinearities of various kinds,
including an intricate coupling between spatial and temporal
constraints. In order to make the problem more tractable,
we propose a two-step approach that iterates between the
electric railway’s minimum cost dispatch problem with fixed
train power profiles solved at each ACCn and the train dispatch
problem solved for each electric train under fixed power
prices. As will become evident in Sections III–V, such a
two-step approach will help decouple some of the interde-
pencies between various decision variables and the coupling
of timescales.

III. ELECTRIC RAILWAY DISPATCH

This section describes the minimization of energy asset
costs in an electric railway where the railway operator must
guarantee that all electric and thermal constraints must be met.
We will explicitly accommodate the constraints and timescales
of each energy agent along the railway. Both thermal and
electrical energy assets powering the electric railway are
included in this optimization. Section III-A describes the
different agents that operate in the system and introduces the
timescales in which the agents interact. Section III-B discusses
the model used for agent costs and operations within the
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railway dispatch problem. Finally, Section III-C uses the agent
costs and operations to state and solve the railway dispatch
problem, following a similar procedure as the one developed
in [15] and [16].

A. Agent Types and Timescales

Within each of the railway segments n, the railway operator
must meet the electrical and thermal demand or load during
the next M future dispatch intervals that are indexed as K ∈
{1, . . . ,M}. Moreover, in managing the electrical system of
the railway, the railway operator is tasked with dispatching and
compensating the electrical agents or assets within ACCn in a
way that minimizes the total cost of the operation. The electric
railway dispatch problem described in this section deter-
mines optimal dispatch for each future time interval; however,
the pricing and dispatch are only binding and executed for
K = 1 after the railway dispatch problem has been solved.

We define five types of dispatchable agents within the
railway power system at each node n that are classified
into the following sets: heating assets (e.g., boilers) Hn ,
electric generation assets (e.g., fuel cell and microturbines)
En , cogeneration assets (e.g., combined heat and power units)
Cn , storage assets (e.g., batteries) Sn , and low-voltage-side
network connections (i.e., points of common coupling) Nn .
The set of all dispatchable agents at node n is denoted as
An � Hn ∪ En ∪ Cn ∪ Nn. It is assumed that within each
dispatch interval K , there are two faster timescales, where
the first corresponds to instances j ∈ {1, . . . , j∗∗}, at each
of which forecast updates of all nondispatchable loads and
generation are received. Between each [ j, j +1], we introduce
a faster timescale k ∈ {1, . . . , k∗} where, at each instance k, all
dispatchable agents negotiate electric and thermal generation
schedules and prices (see Fig. 2). It is assumed that these
timescales with j∗∗ and k∗ are such that they are nested and
that the time intervals permit useful forecast data and sufficient
negotiations.

In addition to the above agents, we also consider three
types of nondispatchable agents at each node n, classified into
the following sets: renewable generators, ren ; electrical loads
(e.g., lighting at the passenger station), en ; and thermal loads
(e.g., heating of the passenger stations), thn. The set of these
nondispatchable agents at node n is denoted as Fn � ren ∪en ∪
thn, all of whom inject and demand electric and thermal energy
from the same network as the dispatchable agents but are not
dispatched by the railway operator. Instead, the operators in
charge of each of these passive resources (i.e., the renewable
asset operator for ren and the passenger station operator for
en and thn) communicate the best load estimate over ACCn’s
future time intervals K . This forecast update occurs every j
when new updates arrive for the renewable assets or any of the
loads. The periods associated with the timescales k and j need
to be such that they should accommodate new information
related to the forecast and, at the same time, the convergence
rates of the negotiations.

Finally, we consider electric trains l ∈ {1, . . . , L} injecting
and demanding electric power from ACCn . We denote the
set of all trains at node n as Tn . For the purpose of the

Fig. 2. Timescales within the railway dispatch problem. Dispatch intervals
K ∈ {1, . . . ,M} constitute the rolling dispatch horizon considered by the
railway operator of ACCn . The passive agents Fn and electric trains Tn
provide a thermal and electric load forecast for each dispatch interval during
forecast instances j ∈ {1, . . . , j∗∗}. Active agents An negotiate price and
quantity during each negotiation instance k ∈ {1, . . . , k∗} based on the forecast
updates and their private cost information. It is assumed that train l traverses
ACCn over the period [tl,n−1, tl,n ], which overlaps with the forecast intervals
K = 1 and K = 2.

railway dispatch problem, the trains are no different from the
set of passive agents Fn in which the train’s electric power
profile is updated for the dispatch intervals K ∈ {1, . . . ,M} at
each forecast instance j . However, as shown in the following,
once we define the train dispatch problem faced by the train
operators for each train in Section IV and the composition of
the transactive controller in Section V, the train update will
transform from a simple forecast update to a price-dependent
minimum cost dispatch update.

B. Agent Costs and Operation

The overall goal of railway dispatch is to arrive at pricing
information that can yield optimal setpoints for generators and
utility power import. Over the time horizon of M dispatch
intervals, the electric and thermal power profiles for each of the
agents considered (dispatchable, nondispatchable, and trains)
are assumed to take positive (generation) and negative (load)
values.

In order to capture the electric and thermal components
of generation for dispatchable agents in An at each time
period M , the output of the generators is denoted by the
decision variable

yi ∈ R
M ∀ i ∈ An (11)

and the K th element of yi as yi,K . This decision variable maps
to an electric and a thermal output as given by

ge
i (yi) = de

i yi ∀ i ∈ An (12)

and

gth
i (yi) = d th

i yi ∀ i ∈ An . (13)

In other words, yi is a dispatch setpoint associated with
a particular electric and thermal output. For electric-only
generator i , the thermal conversion coefficient vector, d th

i ∈
R

M , is the zero vector and the electric conversion coefficient
vector, de

i ∈ R
M , takes positive values. We make the following

assumptions regarding the constraints and costs of dispatchable
agents.

Authorized licensed use limited to: Sudip Mazumder. Downloaded on February 25,2023 at 03:52:40 UTC from IEEE Xplore.  Restrictions apply. 



D’ACHIARDI et al.: TRANSACTIVE CONTROL OF ELECTRIC RAILWAYS USING DYNAMIC MARKET MECHANISMS 753

Assumption 1: Electric and thermal power capacities of
agent i are bound by {Pe

i , Pe
i } and {P th

i , P th
i }, respectively.

Assumption 2: Capacity constraints are not binding and
losses are negligible for all electrical and thermal equipment
in the system other than the dispatchable agents.

Assumption 3: The cost function of each dispatchable agent
i ∈ An is a convex quadratic function, as is commonly derived
when fitting second-order models to fuel input-power output
data from generation units [21].

For a single dispatch interval K ∈ {1, . . . ,M}, this quadratic
cost is denoted as

Ji,K (yi,K ) = ai,K + bi,K yi,K + 1

2
ci,K y2

i,K (14)

and over the multiperiods as

Ji (yi) =
M∑

K=1

Ji,K
(
yi,K

) ∀i ∈ An . (15)

For the agents representing low-voltage-side network connec-
tions N , the cost function can be updated as a function of the
equilibrium price in an external market, such as a wholesale
energy market. Labeling the external market price for the low-
voltage-side network connections as πN

n, j , the cost function
parameters ai,K , bi,K , and ci,K in (14) are determined for
i ∈ N at each forecast instance j . Given that these market
prices commonly represent marginal prices, the cost function
parameters may be simply chosen as: ai,K = 0, bi,K = π i

n, j ,
and ci,K = 0.

Each of the passive agents in Fn determines their power
output for the dispatch intervals K ∈ {1, . . . ,M} at each
forecast instance j (see Fig. 2), which are denoted by P̂ re

j,K

for renewable generators, P̂e
j,K for electric loads, and P̂ th

j,K for
thermal loads. We drop the subscript K to denote the power
output vector over the dispatch intervals in R

M as P̂ re
j , P̂e

j , and
P̂ th

j . In order to determine the train demand, suppose that train
l traverses ACCn over the period [tl,n−1, tl,n] over the dispatch
interval K and Pl(t, n) is the corresponding forecast demand
at instance j , and we denote this demand as P∗

l, j,K . This in
turn can be summed over all L trains to yield

P̂T
j,K =

l=L∑
l=1

P∗
l, j,K . (16)

For ease of exposition, we drop the subscript K in (16) and
simply denote the total train demand at forecast instance j as
P̂T

j .

C. Railway Dispatch Algorithm

With the overall costs and constraints related to all agents
specified as above, we state the railway dispatch problem at
ACCn at a fixed forecast instance j ∈ {1, . . . , j∗∗} over the
dispatch intervals K ∈ {1, . . . ,M} in R

M as

min
yi, j ∀ i∈An

∑
i∈An

Ji(yi, j ) (17)

s.t. ce = P̂ re
j + P̂T

j + P̂e
j

+
∑
i∈An

ge
i (yi, j ) = 0 (18)

cth = P̂ th
j +

∑
i∈An

gth
i (yi, j ) = 0 (19)

m+
i (yi, j ) = yi, j − yi, j ≤ 0 (20)

m−
i (yi, j ) = yi, j − yi, j ≤ 0. (21)

The output values for each dispatchable agent i ∈ An over
the dispatch interval K ∈ {1, . . . ,M} at dispatch instance
j are denoted as yi, j ∈ R

M and constitute the decision
variables of the problem. These decision variables are bound
at each dispatch interval K by the sum of the electric loads
per (18), the thermal loads per (19), the maximum capacity
constraint per (20) where yi, j = min{Pe

i /d
e
i , P th

i /d
th
i }, and

the minimum capacity constraint per (21) where yi, j =
max{Pe

i /d
e
i , P th

i /d
th
i }.

At each forecast instance j ∈ {1, . . . , j∗∗}, the power profile
for each renewable generator, P̂ re

j ∈ R
M , electric load, P̂e

j ∈
R

M , thermal load, P̂ th
j ∈ R

M , and the total traction load, P̂T
j ∈

R
M , are updated for the dispatch interval K ∈ {1, . . . ,M}. The

new forecasts are used to update constraints (18) and (19), with
the resulting optimization problem in (17)–(21) solved again.

With each forecast update j = j + 1, the decision variables
of the problem, denoted as y∗

i, j , optimize the cost in (17). For
the dispatch intervals K ∈ {1, . . . ,M}, these decision variables
can in turn be mapped to the electric and thermal output of
the agents as [ge

i (y
∗
i, j), gth

i y∗
i, j)] ∈ R

M .
The underlying optimization problem that the railway oper-

ator has to solve is therefore given by the solution of (17)–(21)
for a given set of forecast profiles. We propose that each ACCn

solves this through an iterative negotiation process among the
dispatchable agents within this ACC. This is proposed to be
carried out by the faster timescales, k ∈ {1, . . . , k∗} for each
j , that is, at each forecast instance j , the negotiation process
starts at k = 0, where P̂ re

j , P̂e
j , P̂ th

j , and P̂T
j are fixed, allowing

the railway operator at ACCn to establish the electric and
thermal loads for the dispatch horizon. Also, at k = 0, it is
assumed that the railway operator for ACCn broadcasts an
initial price duple λn, j,k=0 = [λe

n, j,0, λ
th
n, j,0] ∈ R

M consisting
of electric and thermal prices.

With these initial conditions, using a Lagrangian and a
gradient-based update, the decision variables yk

i, j ∈ R
M and

the prices λe
n, j,k ∈ R

M and λth
n, j,k ∈ R

M are updated at each
negotiation instance k as

yk+1
i, j = yk

i, j − βyi

(
∇yk

i, j
Ji (y

k
i, j)+

[
∇yk

i, j
he

]T
λe

n, j,k

−
[
∇yk

i, j
hth

]T
λth

n, j,0 ∓ μ±k
i, j

)
(22)

λe
n, j,k+1 = λe

n, j,k + βλe

⎛
⎝P̂ re

j + P̂T
j + P̂e

j +
∑
i∈An

ge
i

(
yk

i, j

)⎞⎠
(23)

λth
n, j,k+1 = λth

n, j,k + βλth

⎛
⎝P̂ th

j +
∑
i∈An

gth
i

(
yk

i, j

)⎞⎠ (24)

where βyi , βλe , βλth ∈ R ∀ i ∈ An are positive step-size
parameters and μ±

i, j ∈ R ∀ i ∈ An is the penalty for vio-
lating capacity constraints (20) and (21). The penalty function

Authorized licensed use limited to: Sudip Mazumder. Downloaded on February 25,2023 at 03:52:40 UTC from IEEE Xplore.  Restrictions apply. 



754 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 2, MARCH 2023

updates are given by

μ±k+1
i, j = max

{
0 , μ±k

i, j + βμiμ
±k
i, j

}
(25)

where βμi is a positive step-size parameter.
It is assumed that these iterations occur at each k and

converge as k → k∗ for some k∗. As outlined in [14], under
suitable convexity conditions, it can be shown that convergence
to unique optimal values takes place.

Defining P̂ F
j = [P̂ re

j + P̂e
j , P̂ th

j ] as the estimate of the
fixed assets at j , these estimates can be updated with j
as the new forecasts arrive. The forecast update enables an
improved dispatch of the agents across the dispatch intervals
K ∈ {1, . . . ,M}. Note that in practice, exit conditions based
on the agent output and price profile updates within the
negotiation process can be established such that the forecast
update is promptly initiated. These exist conditions follow the
form: |yk+1

i, j − yk
i, j | ≤ γ

y
k & |λn,k+1, j − λn,k, j | ≤ γ λk . If these

conditions are met, the equilibrium agent output and price
profiles can be set as y∗

i, j = yk+1
i, j ∀i ∈ An and λ∗

n, j = λn,k+1, j ,
respectively.

Similarly, exit conditions can be established for the forecast
update process such that the agent output and price profile
updates can be communicated for dispatch and settlement if
so desired. These exit conditions follow the form: |y∗

i, j+1 −
y∗

i, j | ≤ γ
y
j & |λ∗

n, j+1 −λ∗
n, j | ≤ γ λj . If these conditions are met,

dispatch for the first interval K = 1 can be established using
agent output profiles y∗∗

i = y∗
i, j+1∀i ∈ An and price profiles

λ∗∗
n = λ∗

n, j+1.
In summary, the railway dispatch algorithm for K = 1 starts

at k = 1, j = 1 with a forecast of the power profile for
each renewable generator, P̂ re

j ∈ R
M , electric load, P̂e

j ∈ R
M ,

thermal load, P̂ th
j ∈ R

M , and the total traction load, P̂T
j ∈ R

M ,
and returns the optimal agent output profiles y∗∗

i , the total
traction demand profile PT ∗∗ and the price profiles λ∗∗

n that
can be used for dispatch and settlement of dispatch interval
K = 1. The dispatch interval window then shifts over, with
K = 2 corresponding to the active dispatch interval and the
process repeats.

IV. TRAIN DISPATCH

In Section III, we assumed that at each ACCn, the train
loads Tn were fixed and the dispatch of the active agents
An was optimized. In this section, we address the fact that
these train loads are indeed flexible and pose a constrained
optimization problem for determining the optimal profiles
of power generation and consumption. In Section IV-A,
we describe the physical model of the train. Next, we define
the cost minimization problem for a track with multiple pricing
regions, managed by ACCn in Section IV-B. With this train
dispatch accomplished, in Section V, we describe how the
railway dispatch optimization described in Section III can
be stitched together with the train dispatch optimization to
result in an overall transactive control framework for the
combined grid-railway infrastructure. This overall framework
is validated using numerical simulation of the Amtrak NEC in
Section VI.

Fig. 3. Free body diagram of electric train l. The resulting traction force
FT ,l , the friction and drag force FDF,l , and the gravitational force component
in the direction of motion of the train ml g sin αl(xl ) are identified. Newton’s
second law of motion is written for the ı̂-direction, along the direction of
motion of the train.

A. Dynamic Model of Electric Trains

The power consumption of the electric train depends on
the traction force, which in turn depends on the overall train
dynamics. In this section, we derive the underlying dynamic
model of the train and the corresponding power consumption
profile. The position, velocity, and acceleration of train l in the
direction of motion ı̂ are denoted by xl , ẋl , and ẍl , respectively.
We proceed by defining the three forces with a component
in the direction of motion of the train ı̂ as it travels at an
angle αl(xl) from the horizon (see Fig. 3). The gravitational
force on the train can be decomposed into the direction of
motion ı̂ as −ml g sin(αl(xl)) and the direction normal to the
ground as −ml g cos(αl(xl)), where ml is the total mass of the
train. The electric motors converting electrical into mechanical
power are assumed to result in the traction force FT,l in the
ı̂-direction. An opposing force FDF,l is also included in the
model, which includes a drag force and a friction force [22].
With these definitions, we can derive the equation of motion
in the direction of motion ı̂ as

ml ẍl = FT,l − FDF,l − ml g sin αl(xl). (26)

The traction force FT,l is a function of both the electric power
Pl and ẋl and is in general a mapping of the ratio Pl/ẋl . The
drag–friction force can be represented as∑

FDF,l = Al + Bl ẋl + Cl ẋl
2 (27)

known as Davis equation [22]. This industry standard approx-
imation captures the rolling resistance effect at low speed
through the linear term and the drag force through the
quadratic term. More detailed drag–friction models for train
cars can be found in [23].

B. Constrained Optimization Problem

Before stating the optimization problem, a few notations
and details related to the train trajectories are addressed. Let
us assume that train l departs location x0 at time t0 and arrives
at a final destination x f at time t f . Let us assume that the
train stops at passenger stations denoted by s ∈ {0, . . . , D}
between t ∈ [tl,a(s), tl,d (s)], where tl,a(s) and tl,d (s) are the
arrival and departure times, respectively, from station s and
xl,s denotes the position of station s. Over the period [t0, t f ],
the train is assumed to traverse n subsections, each dispatched
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by ACCn , with the travel during the time interval [tl,n−1, tn]
that corresponds to a position interval [xn−1, xn], and not
necessarily coincident with the station locations. Let us denote
the corresponding power-demand profile for this train as

Pl(t) =

⎧⎪⎪⎨
⎪⎪⎩

Pl(t, 1), t ∈ [tl,0, tl,1]
...

Pl(t, N), t ∈ [tl,N−1, tl,N ].
(28)

We assume that the railway is level at the passenger stations
(i.e., α(xl,s ) = 0,∀ s ∈ {0, . . . , D}) implying that the power
demand of the train during the stop is equal to zero, Pl(t) =
0 ∈ [tl,a(s), tl,d (s)],∀ s ∈ {0, . . . , D}.

During the same time intervals, the train operator l faces
prices λl(t, n),∀ t ∈ [tl,n−1, tl,n],∀ n ∈ {1, . . . , N}, summa-
rized as

λl(t) =

⎧⎪⎪⎨
⎪⎪⎩
λl(t, 1), t ∈ [tl,0, tl,1]

...

λl(t, N), t ∈ [tl,N−1, tl,N ].
(29)

We determine the prices λl(t) from the price profiles λ∗∗
n

determined in Section III as follows. Suppose that the time
interval [tl,n−1, tl,n ] is specified, which corresponds to the time
interval over which train l traverses ACCn . We choose an
arbitrary time tK ∈ [tl,n, tl,n+1], and suppose that it corresponds
to the K th interval (e.g., the time horizon corresponds to
K = 1 in the example shown in Fig. 2). Then, λl(t, n)
corresponds to the K th element of λe∗∗

n ∈ R
M . The same

process is repeated for all n = 0, . . . , N .
With the above definitions in place, the train dispatch prob-

lem, which corresponds to the optimal profiles of generation
and consumption of power corresponding to each train, is now
posed. Assuming that λl(t), defined in (29), is determined
using the railway dispatch algorithm in Section III-C, the train
power profiles are determined through the minimization of the
energy cost of train l as

min
xl ,ẋl

∫ t f

t0

Pl(ψ)λl(ψ)dψ (30)

s.t. ml ẍl + FDF,l(ẋl)+ ml g sin(αl(xl)) = FT,l

(
Pl

ẋl

)
(31)

Pl(xl) ≤ Pl ≤ Pl(xl) (32)

FT,l(ẋl) ≤ FT,l ≤ FT,l(ẋl) (33)

al ≤ ẍl ≤ al (34)

vl(xl) ≤ ẋl ≤ vl(xl) (35)

tl,a(s) ≥ tl(s), s ∈ {0, . . . , D} (36)

tl,d (s) ≤ tl(s), s ∈ {0, . . . , D} ≥ BF . (37)

In the above, (30) represents the total energy cost incurred
by train l over [t0, tn]. Equation (31) corresponds to the train
kinematics, which includes the dependence of the traction
force on the power profile as well as the train velocity.
Inequalities (32)–(37) denote various constraints on power,
force, velocity, acceleration, and times that need to be accom-
modated. Limits in (33) are determined by the traction force
curve of the train manufacturer, and limits in (34) and (35)

correspond to safety considerations and civil speed limit
restrictions in densely populated areas. Limits in (36) and (37)
correspond to schedule constraints. The optimization problem
in (30)–(37) continues being nonlinear and nonconvex due to
the fact that Pl(t) in (30) is a highly nonlinear function of the
decision variables (xl, ẋl), as it depends on the traction force
and therefore ẍl . It should be noted that all the time intervals
[tl,i , tl,i+1] also depend on the decision variables, which adds
to the nonlinearity as well. However, the crucial difference
between the solution of this problem and the overall problem
stated in Section II is the decoupling of the prices from the
decision variables (xl, ẋl) and, therefore, the time instants tl,i .
As the prices in turn are determined from both a gridwise and a
railwaywise perspective as outlined in Section III, decoupling
them from this optimization problem as outlined above simpli-
fies the problem significantly. In particular, as outlined above,
the price profiles λl(t) can be determined using the railway
dispatch algorithm for a given time interval, and the time
interval in turn is determined using the optimization procedure
of the train dispatch outlined here in this section in (30)–(37).
It is decoupling into these two separate dispatch problems that
represent the main contribution of this article.

The solution of the train dispatch problem in (30)–(37) can
be determined using any one of several commercial software
packages such as MATLAB’s fmincon [24]. Numerical solvers
need to be employed to transform the continuous variables
(including the decision variables) to discrete-time variables of
length (t f − t0)δψ , where δψ is the time step.

V. OVERALL TRANSACTIVE CONTROL

ARCHITECTURE—RDMM

In Section II, we posed a combined optimization problem
of railway dispatch and train dispatch in the form of (1)–(10).
In order to make the problem more tractable, we divided it
into two steps, which were addressed in Sections III and IV.
In Section III, we presented a constrained optimization prob-
lem that solves for the optimal dispatch of energy assets,
where loads, including those of trains as well as renewable
generation, were assumed to be fixed and the electric and
thermal schedules and prices for the generators along the
track are determined as [ge

i (y
∗∗
i ), gth

i (y
∗∗
i )] ∈ R

M and λ∗∗
n =

[λe∗∗
n , λth∗∗

n ] ∈ R
M , respectively, for dispatch intervals K ∈

{1, . . . ,M} in (17)–(21). This formulation captures the agent
operational cost in the first term of (1) and ensures that the
agent constraints (2)–(4) are met. In Section IV, we focused
on the optimization of the train power consumption profiles
themselves. In particular, we showed how each train operator
can solve a constrained optimization problem in (30)–(37) to
minimize energy costs given the track prices and required
schedule. Minimizing the sum of trains’ energy costs is
equivalent to the second term of (1), subject to the constraints
(5)–(10) for each train.

In this section, we summarize how the results of Sections III
and IV can be interleaved to solve the combined optimization
problem posed initially in Section II. This is accomplished
by adjusting the power demand of the trains as a function of
the prices from the railway dispatch problem, as a form of
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Fig. 4. Process flow of the two-step rDMM optimization, including railway
dispatch and train dispatch. The train and railway operators are shown as the
intermediaries between the problems that are being solved. Note that train
operators and railway operators interact in a similar fashion with a growing
number of ACCn,∀n ∈ {1, . . . , N}, and trains l ∈ {1, . . . , L}.

automated demand response at fast timescale, also referred to
as transactive control [25], [26]. This transactive control-based
ACCn price provides an incentive for the electric trains to mod-
ify their dispatch by iteratively solving the cost minimization
problem (30)–(37) with the updated prices. In what follows,
we describe the overall transactive control architecture (see
Fig.4 for an overall schematic and Algorithm 1 for details).

The top block in Fig. 4 denotes the agent dispatch and corre-
sponds to the following functionality: at each forecast instance
j ∈ {1, . . . , j∗∗}, the agent dispatch block takes as inputs
the traction power demand P̂T

j , passive agent output curves
P̂F

j , and the energy prices from the low-voltage-side network
connections πN

n, j and returns the price profiles λ∗
n, j and the

railway dispatch profiles y∗
i, j . As mentioned in Section III, the

energy prices from the low-voltage-side network connections
are used to determine the quadratic cost curve of these agents
as in (14). Next, these cost curves are used to update the
objective function (17) and the traction and passive agent
output curves are used to update constraints (18) and (19).
The iterative dynamics in (17)–(21) are solved using (22)–
(25) for negotiation instances k ∈ {1, . . . , k∗}, stopping when
the negotiation exit conditions defined earlier in Section III
are met at each ACCn.

The block on the right in Fig. 4 corresponds to the function-
ality of the train operator, who composes the price of energy
profile for each train l ∈ 1, . . . , L in (29) using the electricity
portion of the price profiles from the agent dispatch block,
by determining the corresponding dispatch interval K and the
corresponding element of the price vector λe∗∗

n . These are then
used in the train dispatch block (bottom) to determine the next
dispatch profile forecast for each train P∗

l .
The bottom block in Fig. 4 denotes the train dis-

patch and uses the prices λl(t) as in (29) to determine
the cost-minimizing train dispatch for every train. This is
accomplished using the optimization procedure discussed in
Section IV: the energy price profiles from the agent dispatch
block are used to update the objective function of the train
dispatch problem in (30). Once this update is complete,
a new power-demand profile of the train P∗

l is determined
by solving (30)–(37).

Fig. 5. Map of the four pricing regions identified along Amtrak’s NEC
between University Park Station in MA and New Haven Station in CT. This
graphic and the road slope profile, αl(xl ), used in simulation were developed
using Google Earth Pro [27] and the data collected using the GPS of a mobile
phone and the MyTracks iOS application [28].

The block on the left in Fig. 4 represents the railway
operator, who collects the new power-demand profiles for
each of the trains l ∈ 1, . . . , L after each forecast instance j
and assembles the total traction power demand for each ACC
in (16). This new profile is used in the negotiations (22)–(25),
in addition to new forecasts that may become available from
other passive agents P̂ F

j = [P̂ re
j + P̂e

j , P̂ th
j ] at each j and

energy prices from the low-voltage-side network connections
πN

n, j used to determine the cost function parameters ai,K , bi,K ,
and ci,K in (14) for i ∈ N .

The cycling between the agent dispatch and train dispatch
blocks repeats for forecast instances j ∈ {1, . . . , j∗∗}. If the
resulting price λ∗

n, j and railway dispatch y∗
i, j profiles meet

the forecast exit conditions for the network (|y∗
i, j+1 − y∗

i, j | ≥
γ

y
j & |λ∗

n, j+1 − λ∗
n, j | ≥ γ λj ), then the algorithm stops,

dispatching the agents at the last negotiation equilibrium y∗∗
i ,

and is compensated based on the price profiles λ∗∗
n from the

top block. Similarly, trains are dispatched based on the last
forecast update PT ∗∗ from the bottom block and train operators
are required to pay the last negotiation equilibrium price λ∗∗

n .
As mentioned before, the overall iteration is ensured to stop
by using suitable exit conditions. A settlement procedure may
be designed to collect the payments of the agents at a slower
frequency than the convergence of the rDMM (i.e., monthly
payments). Once dispatch takes place for K = 1, the dispatch
horizon shifts by one interval, and the procedure set forth with
j = 1 starts again.

VI. SIMULATIONS

A. Methods and Parameters
The northern Amtrak NEC between Boston, MA, and

New Haven, CT (within the ISO-NE power system), emerges
from a review of the electric railway systems in USA
as a prime case study for our analysis, due to its four
segmented rail power zones that result in the pricing regions
identified in Fig. 5. The four ACCs, ACCn identified with
n ∈ {1, 2, 3, 4}, are powered by the substations at Sharon,
MA; New Warwick, RI; London, CT; and Branford, CT,
and are considered separate pricing regions, each with price
πn∀n ∈ {1, 2, 3, 4} (see Fig. 6).
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Algorithm 1 rDMM

Fig. 6. Schematic of the ACCs proposed for Amtrak’s Northend NEC used
in the simulation. The four ACCs have varying levels of load, renewable
deployment, dispatchable agents, and network energy pricing.

Using the location of these substations, publicly available
electric utility tariff information [29], [30], [31] and real-time
energy market data from ISO-NE [32], we estimate the total
energy cost to the operator (composed of supply and delivery
charges) at each one of the four ACCn’s which are in turn
used as the low-voltage side network connection costs πN

n, j of
the four network connection agents Nn that are used to update
the quadratic cost curve of these agents in (15). Based on the
characteristics of the Route 128/University Park (ACC1) and
Providence (ACC2) passenger stations and their surrounding
commercial spaces, we also add cogeneration assets Cn and
boilers Hn using NREL’s system advisory model (SAM) [33]
for thermal (P th

i , P th
i ) and electric (Pe

i , Pe
i ) sizing, and

estimation of the quadratic cost function coefficients in (15),
as summarized in Table I.

Due to the large roofs and parking lots near the University
Park, Providence, and New Haven passenger stations, we also

assumed that three PV solar arrays ren can be added at ACC1,
ACC2, and ACC4 and used SAM alongside satellite imagery
to size the arrays and estimate their production, P̂ ren

j . We also
used the satellite imagery to measure the footprint of the
passenger stations and estimate the electric (P̂en

j ) and thermal
(P̂ thn

j ) load using the EPA commercial building templates that
can be accessed through SAM.

Amtrak’s high-speed Acela Express service along the NEC
utilizes high-speed locomotives developed by Bombardier in
the late 1990s based on the French TGV [34]. Acela Express
trains have a total empty weight of 531.2 MT and a full
capacity weight of 556.7 MT. In simulation, we assume a
partially occupied weight of ml = 545 MT. Although the
Acela trains are designed to achieve a 264-km/h top speed,
they are limited in operation to 240 km/h, which is equivalent
to vl = 66.67 m/s.

The maximum train traction power Pl is 9.2 MW,
while regenerative braking is limited in operation to Pl =
−6.0 MW [1]. In the absence of public data on the acceleration
rates of high-speed trains such as the Acela, the estimates used
in our simulation (al = −0.5 ms−2 and al = 0.5 ms−2) were
adopted from models of electric train systems used by EPRail.
Fitting the Davis equation (27) to the Acela Express drag
and rail friction curve, FDF,l , we have that Al = 10, 195.16,
Bl = 65.81, and Cl = 25.02.

Using the pricing information of the nodes along the track
and the Amtrak Acela Express train timetable [35] as departure
(tl(s)) and arrival (tl(s)) times for each station, we simulate a
train following a power profile that minimizes total work as
a baseline and a train dispatched by the rDMM methodology
summarized in Algorithm 1.

B. Results

We now report the results obtained using the rDMM out-
lined in Section V, which we will denote as the transactive
controller. In particular, Algorithm 1 was run with all numeri-
cal parameters, as shown in Table I. The results of the rDMM
are shown in Figs. 7 and 8 for a single train’s travel profile
corresponding to the 6:21 A.M. University Park departure of
Acela 2155 on January 18, 2018, a day that exhibited large
network pricing differentials. These figures depict the key
decision variables of the rDMM. Fig. 7 include the energy
price λ∗∗

n and the power consumption P∗
l as the train traverses

the four ACCs. Fig. 8 includes other key decision variables
corresponding to the same run, which are position xl and
velocity ẋl for the single train. It can be seen that the train
schedules are met, and the velocity limits are accommodated.
The most interesting result corresponds to the energy price
shown in the top plot in Fig. 7 and corresponds to the
minimization of the cost function in (17). This price profile
in turn leads to an optimized cost in (30) of U.S. $200.62 for
this single train travel.

C. Discussion

We now make some observations based on the results
obtained above. We evaluate the optimality of the proposed
transactive architecture, through a comparison with two other
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TABLE I

AGENT NUMERICAL PARAMETERS USED IN SIMULATION. MAXIMUM
CAPACITY IS EXPRESSED FOR THE BINDING THERMAL OR ELECTRIC

CHARACTERISTIC AND CAN BE IDENTIFIED BY THE MAPPING

COEFFICIENT de
i OR dTH

i THAT IS EQUAL TO 1. THE OTHER

COST FUNCTION PARAMETERS IN (14) WERE USED AT A
MINIMUM IN SIMULATION, SETTING ci TO A SMALL

POSITIVE QUANTITY

Fig. 7. Plot of average energy price ($/MWh) of a southbound trip on Amtrak
Acela between University Park Station in MA and New Haven Station in CT
with a stop in Providence Station in RI. The power trajectory (MW) for the
train dispatched by the rDMM methodology is also plotted on the price plot,
showcasing the power injection from the train into the electric railway during
regenerative braking.

train profiles that are shown in Fig. 8. The first one corresponds
to a field dataset that was collected using the GPS of a mobile
phone and the MyTracks iOS application [28] on the Acela
2171. It can be seen that the maximum speed of 66.7 m/s as
well as the position datasets corresponding to the transactive
controller are consistent with our field dataset. We computed
the corresponding train cost for this field dataset assuming
the same dynamical model for the Acela train employed in
simulation, summarized in (31), which allows us to solve for
the traction force FT,l as a function of the position, velocity,
and acceleration datasets collected with the phone GPS and
accelerometers. This force dataset can in turn be used in
conjunction with the volatility dataset to arrive at the tractive
power profile for the route. Finally, the marginal cost along
the route, set by the low-voltage-side network connection cost,
can be applied to the profile to determine the total cost. It was
observed that this cost was U.S. $865.01, which shows that our
rDMM results in a 75% reduction. It is possible that the actual
reduction from the rDMM may be somewhat smaller, as we

Fig. 8. Plots of position (km) and velocity (m/s) of a southbound trip on
Amtrak Acela between University Park Station in MA and New Haven Station
in CT with a stop in Providence Station in RI for a train that minimizes work
(blue line), a train one dispatched following rDMM (red line), and a field
train (yellow line).

have not incorporated other speed limit restrictions along the
track such as rail crossings and densely populated areas in the
simulation of the rDMM.

The second profile shown in Fig. 8, denoted as minimum
work, was obtained by solving the train dispatch problem
in (30)–(37) with a uniform price profile λl(τ ) = 1. This
yielded a position and velocity profile, as shown in Fig. 8.
The corresponding price profile is shown in Fig. 8 as well,
which led to a total trip cost U.S. $273.69. Note that the train
dispatched by the rDMM methodology can achieve a 25%
cost reduction when compared to the train dispatched under
the standard minimum work (from U.S. $273.69 to $205.62),
providing an initial estimate of the value of incorporating
dynamic, price-responsive train dispatch in the electric railway
operation.

In summary, the numerical simulation of the proposed
two-step optimization mechanism applied to a segment of the
Southbound Amtrak service along the NEC resulted in a 25%
reduction in energy costs when compared to a standard trip
optimization based on minimum work and a 75% reduction
in energy costs when compared to the train cost calculated
using a field dataset. To our knowledge, the current procedure
adopted by Amtrak for the train profile does not have such
an optimization approach but rather allows train operators
to accelerate and decelerate the train at their discretion with
the supervision and intervention of the positive train control
system. The approach in [8], implemented in freight locomo-
tives, employ algorithms similar to the minimum work method
reported above.

VII. CONCLUSION AND FUTURE WORKS

Electric trains are a major untapped source of demand-side
flexibility in electricity networks. Our findings contribute
to the evolution of transportation control systems devoted
to work minimization toward higher level objectives such
as the social welfare maximization of joint transportation-
electric infrastructures. In particular, our proposed two-step
optimization of railway dispatch of all DER agents along the
train track followed by train dispatch, facilitated by coordi-
nated operations of the railway operator and train operator,
suggests that the inclusion of time and space varying pricing
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information modifies the optimal power profiles of DERs and
trains, yielding reductions in electricity costs for relatively
small increases in work. Simulation studies of the Southbound
Amtrak service along the NEC in USA shows a 25% reduction
in energy costs when compared to standard trip optimization
based on minimum work and a 75% reduction in energy
costs when compared to the train cost calculated using a field
dataset.

Fundamentally, the rDMM introduces transactive energy as
an additional degree of freedom in the control of a system,
capitalizing on technology advancement (e.g., communication
cost reductions, GPS, and widespread adoption of regener-
ative braking) to bridge the objectives of individual agents
(e.g., trains and DERs) with those of global infrastructure
(e.g., traction system and wholesale energy markets), that is,
through adjustments of incentives in the form of electricity
prices, we were able to ensure a coordinated set of profiles
for all DERs and trains.

This technology could further motivate the deployment of
automation technologies in train systems, as the business case
improves when factoring electrical cost reductions. We expect
that our findings could be developed into a software package
for train operators, similar to GE’s trip optimizer technology
that has been adopted by heavy haul train operators to decrease
fuel use [8].

1) Demand Charge Management: Although our work is a
step toward including the electric traction system’s costs within
the train dispatch problem, we only reflect energy-related
costs ($/MWh). In reality, the railway operator will also incur
demand or capacity charges ($/MW) from the utility or ISO.
These charges can also be reduced, in principle, using a
transactive control methodology where the incentive signal
shifts and smooths the power profile of the individual trains
such that a reduction in demand at the main interconnec-
tion (traction substation) is met. We considered including
the demand charge component within the cost function of
low-voltage-side network connections Nn as a second-order
term, but this methodology did not appropriately capture the
timescale (typically months) at which demand charges are
evaluated. A means of achieving demand charge management
is to update constraints within the optimization problem,
modifying the minimum and maximum power limits Pl(xl)

and Pl(xl) in (32).
2) Regulation and Reserve Market Participation: Similar

to the research direction regarding demand charges, we would
like to extend the services provided by the transactive control
system to the electrical network beyond energy and onto
products for frequency regulation and operational reserves.
Practical limitations of providing these services as well as
the incentive and compensation mechanisms remain to be
explored.

3) Mass Transit Systems: Our analysis focused on the
practical intricacies of high-speed rail systems. Although our
simulations were based on the high-speed rail example in
USA, the Amtrak Acela service, we are aware that other
systems, such as the MBTA mass transit T service, also
evidence discontinuities in energy price along their track and
have strategic plans to add rail-side generation [36]. Extending

our simulation work to mass transit systems would widen the
applicability of our proposed transactive control architecture.

4) Stochastic Modeling: In this article, we have employed
a deterministic approach and have focused on the complex,
nonlinear relationship between key decision variables that
change with space and time. An extension to consider a
stochastic counterpart of the approach proposed, building from
the agent dispatch component, which requires energy market
price, renewable generation, and load forecast inputs at each
forecast instance j = {1, . . . , j∗∗}, as well as the railway
dispatch component outputs (see Fig. 4).
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